SEARCH

SEARCH BY CITATION

References

  • Abad-Rodriguez J., Ledesma M. D., Craessaerts K., Perga S., Medina M., Delacourte A., Dingwall C., De Strooper B. and Dotti C. G. (2004) Neuronal membrane cholesterol loss enhances amyloid peptide generation. J. Cell Biol. 167, 953960.
  • Aksenova M. V., Aksenov M. Y., Markesbery W. R. and Butterfield D. A. (1999) Aging in a dish: age-dependent changes of neuronal survival, protein oxidation, and creatine kinase BB expression in long-term hippocampal cell culture. J. Neurosci. Res. 58, 308317.
  • Bedard K. and Krause K. H. (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245313.
  • Bjorkhem I. and Diczfalusy U. (2004) 24(S),25-epoxycholesterol – a potential friend. Arterioscler. Thromb. Vasc. Biol. 24, 22092210.
  • Bjorkhem I., Lutjohann D., Breuer O., Sakinis A. and Wennmalm A. (1997) Importance of a novel oxidative mechanism for elimination of brain cholesterol. Turnover of cholesterol and 24(S)-hydroxycholesterol in rat brain as measured with 18O2 techniques in vivo and in vitro. J. Biol. Chem. 272, 3017830184.
  • Bjorkhem I., Lutjohann D., Diczfalusy U., Stahle L., Ahlborg G. and Wahren J. (1998) Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J. Lipid Res. 39, 15941600.
  • Bjorkhem I., Andersson U., Ellis E., Alvelius G., Ellegard L., Diczfalusy U., Sjovall J. and Einarsson C. (2001) From brain to bile. Evidence that conjugation and omega-hydroxylation are important for elimination of 24S-hydroxycholesterol (cerebrosterol) in humans. J. Biol. Chem. 276, 3700437010.
  • Blalock E. M., Chen K. C., Sharrow K., Herman J. P., Porter N. M., Foster T. C. and Landfield P. W. (2003) Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J. Neurosci. 23, 38073819.
  • Bligh E. G. and Dyer W. J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911917.
  • Blum R. and Konnerth A. (2005) Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology (Bethesda, MD) 20, 7078.
  • Bogdanovic N., Bretillon L., Lund E. G., Diczfalusy U., Lannfelt L., Winblad B., Russell D. W. and Bjorkhem I. (2001) On the turnover of brain cholesterol in patients with Alzheimer’s disease. Abnormal induction of the cholesterol-catabolic enzyme CYP46 in glial cells. Neurosci. Lett. 314, 4548.
  • Borroni B., Archetti S., Agosti C., Akkawi N., Brambilla C., Caimi L., Caltagirone C., Di Luca M. and Padovani A. (2004) Intronic CYP46 polymorphism along with ApoE genotype in sporadic Alzheimer Disease: from risk factors to disease modulators. Neurobiol. Aging 25, 747751.
  • Brennan A. M., Suh S. W., Won S. J., Narasimhan P., Kauppinen T. M., Lee H., Edling Y., Chan P. H. and Swanson R. A. (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat. Neurosci. 12, 857863.
  • Cartagena C. M., Ahmed F., Burns M. P., Pajoohesh-Ganji A., Pak D. T., Faden A. I. and Rebeck G. W. (2008) Cortical injury increases cholesterol 24S hydroxylase (Cyp46) levels in the rat brain. J. Neurotrauma 25, 10871098.
  • Conover J. C. and Yancopoulos G. D. (1997) Neurotrophin regulation of the developing nervous system: analyses of knockout mice. Rev. Neurosci. 8, 1327.
  • Conover J. C., Erickson J. T., Katz D. M. et al. (1995) Neuronal deficits, not involving motor neurons, in mice lacking BDNF and/or NT4. Nature 375, 235238.
  • Davies A. M., Minichiello L. and Klein R. (1995) Developmental changes in NT3 signalling via TrkA and TrkB in embryonic neurons. EMBO J. 14, 44824489.
  • Desai P., DeKosky S. T. and Kamboh M. I. (2002) Genetic variation in the cholesterol 24-hydroxylase (CYP46) gene and the risk of Alzheimer’s disease. Neurosci. Lett. 328, 912.
  • Dietschy J. M. and Turley S. D. (2001) Cholesterol metabolism in the brain. Curr. Opin. Lipidol. 12, 105112.
  • Duchemin A. M., Ren Q., Mo L., Neff N. H. and Hadjiconstantinou M. (2002) GM1 ganglioside induces phosphorylation and activation of Trk and Erk in brain. J. Neurochem. 81, 696707.
  • Dunkley P. R., Jarvie P. E. and Robinson P. J. (2008) A rapid Percoll gradient procedure for preparation of synaptosomes. Nat. Protoc. 3, 17181728.
  • Ernfors P., Lee K. F. and Jaenisch R. (1994) Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368, 147150.
  • Gates M. A., Tai C. C. and Macklis J. D. (2000) Neocortical neurons lacking the protein-tyrosine kinase B receptor display abnormal differentiation and process elongation in vitro and in vivo. Neuroscience 98, 437447.
  • Gooney M., Messaoudi E., Maher F. O., Bramham C. R. and Lynch M. A. (2004) BDNF-induced LTP in dentate gyrus is impaired with age: analysis of changes in cell signaling events. Neurobiol. Aging 25, 13231331.
  • Gorski J. A., Zeiler S. R., Tamowski S. and Jones K. R. (2003) Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J. Neurosci. 23, 68566865.
  • Ha J. S., Lee J. E., Lee J. R. et al. (2010) Nox4-dependent H2O2 production contributes to chronic glutamate toxicity in primary cortical neurons. Exp. Cell Res. 316, 16511661.
  • Hanzal-Bayer M. F. and Hancock J. F. (2007) Lipid rafts and membrane traffic. FEBS Lett. 581, 20982104.
  • Hartmann M., Brigadski T., Erdmann K. S., Holtmann B., Sendtner M., Narz F. and Lessmann V. (2004) Truncated TrkB receptor-induced outgrowth of dendritic filopodia involves the p75 neurotrophin receptor. J. Cell Sci. 117, 58035814.
  • Hattiangady B., Rao M. S., Shetty G. A. and Shetty A. K. (2005) Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus. Exp. Neurol. 195, 353371.
  • Hayflick L. (1998) A brief history of the mortality and immortality of cultured cells. Keio J. Med. 47, 174182.
  • Hill J. J., Kolluri N., Hashimoto T., Wu Q., Sampson A. R., Monteggia L. M. and Lewis D. A. (2005) Analysis of pyramidal neuron morphology in an inducible knockout of brain-derived neurotrophic factor. Biol. Psychiatry 57, 932934.
  • Iannilli F., Sodero A. O., Ledesma M. D. and Dotti C. G. (2009) Oxidative stress activates the pro-survival TrkA pathway through membrane cholesterol loss. Neurobiol. Aging, in press.
  • Igbavboa U., Avdulov N. A., Chochina S. V. and Wood W. G. (1997) Transbilayer distribution of cholesterol is modified in brain synaptic plasma membranes of knockout mice deficient in thelow-density lipoprotein receptor, apolipoprotein E, or both proteins. J. Neurochem. 69, 16611667.
  • Jacobson K., Mouritsen O. G. and Anderson R. G. (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat. Cell Biol. 9, 714.
  • Jones K. R., Farinas I., Backus C. and Reichardt L. F. (1994) Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76, 989999.
  • Kaech S. and Banker G. (2006) Culturing hippocampal neurons. Nat. Protoc. 1, 24062415.
  • Kalvodova L., Kahya N., Schwille P., Ehehalt R., Verkade P., Drechsel D. and Simons K. (2005) Lipids as modulators of proteolytic activity of BACE: involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro. J. Biol. Chem. 280, 3681536823.
  • Kaplan D. R. and Miller F. D. (2000) Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381391.
  • Katoh-Semba R., Semba R., Takeuchi I. K. and Kato K. (1998) Age-related changes in levels of brain-derived neurotrophic factor in selected brain regions of rats, normal mice and senescence-accelerated mice: a comparison to those of nerve growth factor and neurotrophin-3. Neurosci. Res. 31, 227234.
  • Kolsch H., Lutjohann D., Ludwig M. et al. (2002) Polymorphism in the cholesterol 24S-hydroxylase gene is associated with Alzheimer’s disease. Mol. Psychiatry 7, 899902.
  • Kotti T. J., Ramirez D. M., Pfeiffer B. E., Huber K. M. and Russell D. W. (2006) Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc. Natl Acad. Sci. USA 103, 38693874.
  • Kracun I., Rosner H., Drnovsek V., Vukelic Z., Cosovic C., Trbojevic-Cepe M. and Kubat M. (1992) Gangliosides in the human brain development and aging. Neurochem. Int. 20, 421431.
  • Kuroda Y., Kobayashi K., Ichikawa M., Kawahara M. and Muramoto K. (1995) Application of long-term cultured neurons in aging and neurological research: aluminum neurotoxicity, synaptic degeneration and Alzheimer’s disease. Gerontology 41(Suppl. 1), 26.
  • Ledesma M. D., Abad-Rodriguez J., Galvan C., Biondi E., Navarro P., Delacourte A., Dingwall C. and Dotti C. G. (2003) Raft disorganization leads to reduced plasmin activity in Alzheimer’s disease brains. EMBO Rep. 4, 11901196.
  • Lee F. S. and Chao M. V. (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc. Natl Acad. Sci. USA 98, 35553560.
  • Li M. H., Jang J. H., Na H. K., Cha Y. N. and Surh Y. J. (2007) Carbon monoxide produced by heme oxygenase-1 in response to nitrosative stress induces expression of glutamate-cysteine ligase in PC12 cells via activation of phosphatidylinositol 3-kinase and Nrf2 signaling. J. Biol. Chem. 282, 2857728586.
  • Li-Hawkins J., Lund E. G., Bronson A. D. and Russell D. W. (2000) Expression cloning of an oxysterol 7alpha-hydroxylase selective for 24-hydroxycholesterol. J. Biol. Chem. 275, 1654316549.
  • Luikart B. W., Nef S., Virmani T., Lush M. E., Liu Y., Kavalali E. T. and Parada L. F. (2005) TrkB has a cell-autonomous role in the establishment of hippocampal Schaffer collateral synapses. J. Neurosci. 25, 37743786.
  • Lund E. G., Guileyardo J. M. and Russell D. W. (1999) cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc. Natl Acad. Sci. USA 96, 72387243.
  • Lutjohann D., Breuer O., Ahlborg G., Nennesmo I., Siden A., Diczfalusy U. and Bjorkhem I. (1996) Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc. Natl Acad. Sci. USA 93, 97999804.
  • Marshak S., Nikolakopoulou A. M., Dirks R., Martens G. J. and Cohen-Cory S. (2007) Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity. J. Neurosci. 27, 24442456.
  • Martin M. G., Perga S., Trovo L. et al. (2008) Cholesterol loss enhances TrkB signaling in hippocampal neurons aging in vitro. Mol. Biol. Cell 19, 21012112.
  • Martin M. G., Trovo L., Perga S., Sadowska A., Rasola A., Chiara F. and Dotti C. G. (2009) Cyp46-mediated cholesterol loss promotes survival in stressed hippocampal neurons. Neurobiol. Aging, in press.
  • Matthies H., Jr, Schulz S., Hollt V. and Krug M. (1997) Inhibition by compactin demonstrates a requirement of isoprenoid metabolism for long-term potentiation in rat hippocampal slices. Neuroscience 79, 341346.
  • McEwen B. S. (1999) Stress and hippocampal plasticity. Annu. Rev. Neurosci. 22, 105122.
  • McEwen B. S. (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873904.
  • Modi H. R., Katyare S. S. and Patel M. A. (2008) Ageing-induced alterations in lipid/phospholipid profiles of rat brain and liver mitochondria: implications for mitochondrial energy-linked functions. J. Membr. Biol. 221, 5160.
  • Morrison J. H. and Hof P. R. (1997) Life and death of neurons in the aging brain. Science 278, 412419.
  • Nagy A. and Delgado-Escueta A. V. (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll). J. Neurochem. 43, 11141123.
  • Nicholson A. M. and Ferreira A. (2009) Increased membrane cholesterol might render mature hippocampal neurons more susceptible to beta-amyloid-induced calpain activation and tau toxicity. J. Neurosci. 29, 46404651.
  • Nicolau D. V., Jr, Burrage K., Parton R. G. and Hancock J. F. (2006) Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane. Mol. Cell. Biol. 26, 313323.
  • Oh H. Y., Lee E. J., Yoon S., Chung B. H., Cho K. S. and Hong S. J. (2007) Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction. Prostate 67, 10611069.
  • Ohyama Y., Meaney S., Heverin M. et al. (2006) Studies on the transcriptional regulation of cholesterol 24-hydroxylase (CYP46A1): marked insensitivity toward different regulatory axes. J. Biol. Chem. 281, 38103820.
  • Papassotiropoulos A., Streffer J. R., Tsolaki M. et al. (2003) Increased brain beta-amyloid load, phosphorylated tau, and risk of Alzheimer disease associated with an intronic CYP46 polymorphism. Arch. Neurol. 60, 2935.
  • Paratcha G. and Ibanez C. F. (2002) Lipid rafts and the control of neurotrophic factor signaling in the nervous system: variations on a theme. Curr. Opin. Neurobiol. 12, 542549.
  • Pereira D. B. and Chao M. V. (2007) The tyrosine kinase Fyn determines the localization of TrkB receptors in lipid rafts. J. Neurosci. 27, 48594869.
  • Perovic M., Mladenovic Djordjevic A., Smiljanic K., Tanic N., Rakic L., Ruzdijic S. and Kanazir S. (2009) Expression of cholesterol homeostasis genes in the brain of the male rat is affected by age and dietary restriction. Biogerontology 10, 735745.
  • Porter N. M., Thibault O., Thibault V., Chen K. C. and Landfield P. W. (1997) Calcium channel density and hippocampal cell death with age in long-term culture. J. Neurosci. 17, 56295639.
  • Prinetti A., Chigorno V., Prioni S., Liberto N., Marano N., Tettamanti G. and Sonnino S. (2001) Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J. Biol. Chem. 276, 2113621145.
  • Ramirez D. M., Andersson S. and Russell D. W. (2008) Neuronal expression and subcellular localization of cholesterol 24-hydroxylase in the mouse brain. J. Comp. Neurol. 507, 16761693.
  • Reichardt L. F. (2006) Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. London 361, 15451564.
  • Shetty A. K., Rao M. S., Hattiangady B., Zaman V. and Shetty G. A. (2004) Hippocampal neurotrophin levels after injury: Relationship to the age of the hippocampus at the time of injury. J. Neurosci. Res. 78, 520532.
  • Simons K. and Toomre D. (2000) Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 3139.
  • Soderberg M., Edlund C., Kristensson K. and Dallner G. (1990) Lipid compositions of different regions of the human brain during aging. J. Neurochem. 54, 415423.
  • Sodero A. O., Weissmann C., Ledesma M. D. and Dotti C. G. (2010) Cellular stress from excitatory neurotransmission contributes to cholesterol loss in hippocampal neurons aging in vitro. Neurobiol. Aging, in press.
  • Stenqvist A., Agerman K., Marmigere F., Minichiello L. and Ernfors P. (2005) Genetic evidence for selective neurotrophin 3 signalling through TrkC but not TrkB in vivo. EMBO Rep. 6, 973978.
  • Sugiura Y., Shimma S., Konishi Y., Yamada M. K. and Setou M. (2008) Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus. PLoS ONE 3, 3232.
  • Suzuki S., Numakawa T., Shimazu K., Koshimizu H., Hara T., Hatanaka H., Mei L., Lu B. and Kojima M. (2004) BDNF-induced recruitment of TrkB receptor into neuronal lipid rafts: roles in synaptic modulation. J. Cell Biol. 167, 12051215.
  • Svennerholm L., Bostrom K., Helander C. G. and Jungbjer B. (1991) Membrane lipids in the aging human brain. J. Neurochem. 56, 20512059.
  • Svennerholm L., Bostrom K., Jungbjer B. and Olsson L. (1994) Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J. Neurochem. 63, 18021811.
  • Svennerholm L., Bostrom K. and Jungbjer B. (1997) Changes in weight and compositions of major membrane components of human brain during the span of adult human life of Swedes. Acta Neuropathol. 94, 345352.
  • Teter B. and Finch C. E. (2004) Caliban’s heritance and the genetics of neuronal aging. Trends Neurosci. 27, 627632.
  • Teunissen C. E., Floris S., Sonke M., Dijkstra C. D., De Vries H. E. and Lutjohann D. (2007) 24S-Hydroxycholesterol in relation to disease manifestations of acute experimental autoimmune encephalomyelitis. J. Neurosci. Res. 85, 14991505.
  • Thelen K. M., Falkai P., Bayer T. A. and Lutjohann D. (2006) Cholesterol synthesis rate in human hippocampus declines with aging. Neurosci. Lett. 403, 1519.
  • Tokuyama W., Hashimoto T., Li Y. X., Okuno H. and Miyashita Y. (1998) Highest trkB mRNA expression in the entorhinal cortex among hippocampal subregions in the adult rat: contrasting pattern with BDNF mRNA expression. Brain Res. Mol. Brain Res. 62, 206215.
  • Valsecchi M., Chigorno V., Nicolini M. and Sonnino S. (1996) Changes of free long-chain bases in neuronal cells during differentiation and aging in culture. J. Neurochem. 67, 18661871.
  • Van Veldhoven P. P. and Bell R. M. (1988) Effect of harvesting methods, growth conditions and growth phase on diacylglycerol levels in cultured human adherent cells. Biochim. Biophys. Acta 959, 185196.
  • Van Veldhoven P. P., Meyhi E. and Mannaerts G. P. (1998) Enzymatic quantitation of cholesterol esters in lipid extracts. Anal. Biochem. 258, 152155.
  • Wang F. and Jia J. (2007) Polymorphisms of cholesterol metabolism genes CYP46 and ABCA1 and the risk of sporadic Alzheimer’s disease in Chinese. Brain Res. 1147, 3438.
  • Whitesell L. and Lindquist S. L. (2005) HSP90 and the chaperoning of cancer. Nat. Rev. Cancer 5, 761772.
  • Wood W. G., Schroeder F., Avdulov N. A., Chochina S. V. and Igbavboa U. (1999) Recent advances in brain cholesterol dynamics: transport, domains, and Alzheimer’s disease. Lipids 34, 225234.
  • Yamamoto N., Matsubara T., Sato T. and Yanagisawa K. (2008) Age-dependent high-density clustering of GM1 ganglioside at presynaptic neuritic terminals promotes amyloid beta-protein fibrillogenesis. Biochim. Biophys. Acta 1778, 27172726.
  • Yan Q., Elliott J. L., Matheson C., Sun J., Zhang L., Mu X., Rex K. L. and Snider W. D. (1993) Influences of neurotrophins on mammalian motoneurons in vivo. J. Neurobiol. 24, 15551577.
  • Zaccaro M. C., Ivanisevic L., Perez P., Meakin S. O. and Saragovi H. U. (2001) p75 Co-receptors regulate ligand-dependent and ligand-independent Trk receptor activation, in part by altering Trk docking subdomains. J. Biol. Chem. 276, 3102331029.