SEARCH

SEARCH BY CITATION

Keywords:

  • cell death;
  • memory;
  • neuroprotection;
  • pathophysiology;
  • plasticity;
  • transcription

Abstract

  1. Top of page
  2. Abstract
  3. CREB structure and regulation
  4. Additional CREB regulatory mechanisms
  5. CREB target genes
  6. CREB in memory and plasticity
  7. CREB in neuronal development and cell survival
  8. CREB regulation under physiological and pathophysiological conditions
  9. CREB and oxidative stress
  10. CREB and pre-conditioning-evoked neuroprotection
  11. CREB and disorders of the CNS
  12. Conclusion
  13. Acknowledgements
  14. References

J. Neurochem. (2011) 116, 1–9.

Abstract

Since its initial characterization over 20 years ago, there has been intense and unwavering interest in understanding the role of the transcription factor cAMP-responsive element binding protein (CREB) in nervous system physiology. Through an array of experimental approaches and model systems, researchers have begun to unravel the complex and multifaceted role of this transcription factor in such diverse processes as neurodevelopment, synaptic plasticity, and neuroprotection. Here we discuss current insights into the molecular mechanisms by which CREB couples synaptic activity to long-term changes in neuronal plasticity, which is thought to underlie learning and memory. We also discuss work showing that CREB is a critical component of the neuroprotective transcriptional network, and data indicating that CREB dysregulation contributes to an array of neuropathological conditions.


Abbreviations used:
AD

Alzheimer’s disease

ATM

ataxia telangiectasia mutated

BDNF

brain-derived neurotrophic factor

b-zip domain

basic leucine zipper domain

CBP

CREB-binding protein

ChIP

chromatin immunoprecipitation

CRE

cAMP response element

CREB

cAMP-responsive element binding protein

CREM

cAMP-responsive element modulator

GSK3beta

glycogen synthase kinase-3beta

HD

Huntington’s disease

IGF-1

insulin-like growth factor 1

KID

kinase-inducible domain

LTD

long-term depression

NGF

nerve growth factor

PD

Parkinson’s disease

PGC-1α

peroxisome proliferator-activated receptor gamma coactivator-1α

PP1 and PP2A

serine/threonine-specific protein phosphatases type 1 and 2A

Q1 and Q2

glutamine-rich domains 1 and 2

ROS

reactive oxygen species

TAF

TATA-binding protein-associated factor

TORC

transducers of CREB regulatory activity

TrkB

tyrosine receptor kinase B

CREB structure and regulation

  1. Top of page
  2. Abstract
  3. CREB structure and regulation
  4. Additional CREB regulatory mechanisms
  5. CREB target genes
  6. CREB in memory and plasticity
  7. CREB in neuronal development and cell survival
  8. CREB regulation under physiological and pathophysiological conditions
  9. CREB and oxidative stress
  10. CREB and pre-conditioning-evoked neuroprotection
  11. CREB and disorders of the CNS
  12. Conclusion
  13. Acknowledgements
  14. References

cAMP-responsive element binding protein (CREB) was originally identified in 1987 as a 43 kDa nuclear protein which binds to the cAMP response element (CRE) of the somatostatin gene in PC12 cells (Montminy and Bilezikjian 1987). Further work revealed that CREB is a member of a large functionally and structurally related group of transcription factors, termed the basic leucine zipper domain (b-zip domain) family, which includes activation transcription factor 1, and cAMP-responsive element modulator (CREM). Of note, a detailed discussion of the various CREB splice variants, as well as other b-zip family members is beyond the scope of this review, and as such, readers are referred to excellent reviews of this topic (Mayr and Montminy 2001; Don and Stelzer 2002).

CREB can be organized into distinct domains that allow it to dimerize, interact with DNA, cofactors, and the basal transcriptional complex. Located at the C-terminus of CREB is the bZIP DNA-binding domain, which binds to the CRE, and the dimerization domain, which allows CREB to homo- and hetero-dimerize (Schumacher et al. 2000). Located at the N-terminus of CREB is the glutamine-rich 1 (Q1) domain, which is followed by the kinase-inducible domain (KID), and then the Q2 domain. These domains interact with various co-factors (described below) as well as components of the basal transcription complex (Johannessen et al. 2004). For example, Q1 and Q2 domains interact with TATA-binding protein-associated factor II 135 which in turn recruits the polymerase complex and stimulates transcription (Felinski and Quinn 2001).

The KID is a regulatory region that plays a key role in coupling changes in intracellular signaling to CREB-mediated transcription. Central to this region is Serine (Ser) 133, which is targeted by a number of activity-inducible kinases, including Ca2+/CaM-dependent kinase II and IV, protein kinase A, protein kinase C, mitogen/stress-activated kinase, ribosomal S6 kinase, AKT, and MAPKAP kinase2 (Gonzalez and Montminy 1989; de Groot et al. 1993; Ginty et al. 1994; Sun et al. 1994; Tan et al. 1996; Xing et al. 1996; Deak et al. 1998; Du and Montminy 1998). Hence, kinase activity in response to an array of stimuli, including increased intracellular Ca2+ and cAMP, triggers the phosphorylation of Ser 133. Once in the Ser 133-phosphorylated state, CREB becomes a binding target of the KIX domain in the transcription co-activators CREB-binding protein (CBP) and p300 (Parker et al. 1996), thus allowing induction of CRE-mediated transcription.

In addition to Ser 133, the functionality of CREB can be affected via an array of additional phosphorylation events, which have complex and context-specific effects on CREB transactivation. For example, the phosphorylation of Ser 142 by Ca2+/CaM-dependent kinase II has been shown to represses CREB transactivation by triggering the dissociation of the CREB dimer and, in turn, inhibiting CBP recruitment (Wu and McMurray 2001; Kornhauser et al. 2002). Conversely, using a combination of phosphorylation-specific antibodies and a CREB Ser 142-to-Alanine 142 knock-in mouse, Gau et al. (2002), showed Ser 142 is phosphorylated in an activity-dependent manner and is required for robust CREB-mediated gene expression in the CNS.

Glycogen synthase kinase-3beta (GSK3beta), a kinase implicated in neurodegenerative and psychiatric disorders, phosphorylates CREB at Ser 129. As with Ser 142, the phosphorylation of this site has been shown to both enhance and suppress CREB- mediated gene expression (Fiol et al. 1994; Bullock and Habener 1998; Grimes and Jope 2001). Recent work has also revealed that in response to the genotoxic stress, the homeodomain-interacting protein kinase 2 phosphorylates CREB at Ser 271 and activates CREB-dependent gene transcription through the recruitment of CBP/p300 (Sakamoto et al. 2010). Finally, the complexity of CREB phospho-regulation can be appreciated by the work of Shanware et al. (2007), which showed that DNA damage triggers CREB inhibition via a series of intertwined steps initiated by casein kinase phosphorylation of multiple Ser residues (i.e. Ser 108, 111, 114, and 117), which in turn, allows ataxia telangiectasia mutated (ATM)-dependent phosphorylation of Ser 121, thus leading to a decoupling of CREB and CBP. Given the discussion above, it should not be surprising that casein kinase/ATM phosphorylation has also been shown to stimulate rather than inhibit CREB transactivation (Kim et al. 2010).

In addition to phosphorylation, CREB dephosphorylation can also be regulated in an activity-dependent manner. Along these lines, the dephosphorylation of CREB at Ser 133, which leads to transcriptional repression, is mediated by Ser/Thr-specific protein phosphatases type 1 (PP1) and 2A (PP2A) (Wadzinski et al. 1993; Alberts et al. 1994). Of note, in hippocampal neurons, synaptic activity can lead to a prolonged period of CREB phosphorylation via the inhibition of PP1 (Bito et al. 1996).

Additional CREB regulatory mechanisms

  1. Top of page
  2. Abstract
  3. CREB structure and regulation
  4. Additional CREB regulatory mechanisms
  5. CREB target genes
  6. CREB in memory and plasticity
  7. CREB in neuronal development and cell survival
  8. CREB regulation under physiological and pathophysiological conditions
  9. CREB and oxidative stress
  10. CREB and pre-conditioning-evoked neuroprotection
  11. CREB and disorders of the CNS
  12. Conclusion
  13. Acknowledgements
  14. References

Although CREB is mainly regulated through phosphorylation, alternate CREB regulatory mechanisms have been reported, including acetylation, ubiquitination, sumoylation, and glycosylation (Taylor et al. 2000; Comerford et al. 2003; Lamarre-Vincent and Hsieh-Wilson 2003; Lu et al. 2003). For example, CREB is acetylated by CBP at three lysine residues around the Q1 and KID domains, which enhances CRE-dependent transcription (Lu et al. 2003). In addition, CREB can function as a constitutive transcriptional activator, independent of Ser 133 phosphorylation. This occurs via the transducers of CREB regulatory activity (TORC) family of CREB coactivators. TORCs facilitate CREB-mediated transcription via an association with the bZIP DNA-binding domain, which enhances CREB interactions with components of the basal transcriptional complex (Conkright et al. 2003a). Within the nervous system, TORCs have been implicated in regulating neuronal development and plasticity (Finsterwald et al. 2010; Zhou et al. 2006).

CREB is also regulated at the translational level. For example, the non-coding small RNA, miR-34b has been shown to bind to the 3′-UTR of CREB mRNA and repress CREB expression (Pigazzi et al. 2009). Interestingly, there is an inverse correlation between miR-34b and CREB expression levels in patients with acute myeloid leukemia (Pigazzi et al. 2009). Recently, miR-134, a brain-specific miRNA, was also shown to regulate CREB expression levels (Gao et al. 2010). Interestingly, within the hippocampus, NAD-dependent deacetylase silent mating type information regulation 2 homolog 1 deficiency causes increased miR-134 expression, leading to the reduction of CREB expression and impaired synaptic plasticity (Gao et al. 2010).

To add a further wrinkle, recent work revealed that CREB mRNA is localized to dorsal root ganglion axons, and, upon nerve growth factor (NGF) stimulation, is translated and retrogradely transported to the nucleus, driving a pro-survival transcriptional response (Cox et al. 2008). Additional work that determines how this relatively small pool of CREB could exert such a profound and specific transcriptional effect will be critical to further this fascinating line of inquiry. Of note, CREB is also expressed within mitochondria and affects mitochondrial gene expression and neuronal viability (Lee et al. 2005b).

Finally, CREB transcriptional potential can be regulated at an epigenetic level. Along these lines, cytosine methylation within CRE sites inhibits CREB binding to DNA, which in turn, inhibits CRE-dependent transcription (Iguchi-Ariga and Schaffner 1989; Zhang et al. 2005). This process can be dynamically regulated, and appears to contribute to inducible brain-derived neurotrophic factor (BDNF) expression in the CNS (Yossifoff et al. 2008).

CREB target genes

  1. Top of page
  2. Abstract
  3. CREB structure and regulation
  4. Additional CREB regulatory mechanisms
  5. CREB target genes
  6. CREB in memory and plasticity
  7. CREB in neuronal development and cell survival
  8. CREB regulation under physiological and pathophysiological conditions
  9. CREB and oxidative stress
  10. CREB and pre-conditioning-evoked neuroprotection
  11. CREB and disorders of the CNS
  12. Conclusion
  13. Acknowledgements
  14. References

Reporter gene-based methods have been used for years to identify CREB-regulated genes. These approaches have recently been complemented with bioinformatic based-methods, combined with microarrays and chromatin immunoprecipitation (ChIP)-based chromatin occupancy analysis, such as ChIP-on-chip and the serial analysis of chromatin occupancy (Conkright et al. 2003b; Fass et al. 2003; McClung and Nestler 2003; Euskirchen et al. 2004; Impey et al. 2004; Zhang et al. 2005) to interrogate vast regions of the genome for CREB-binding and CRE-regulated gene expression. These studies have revealed a diverse array of both inducible and constitutively expressed genes that are regulated by CREB. For example, using the serial analysis of chromatin occupancy methods, which is a modified ChIP/serial analysis of gene expression-based approach, Impey et al. (2004) identified 6302 CREB-binding regions in forskolin-treated PC12 cells. These data were tested via an affymetrix array, which showed that forskolin induces 1621 genes, half of which were occupied by CREB (Impey et al. 2004). Of note, these studies found that the CRE binding motif can be quite variable, diverging from the ‘consensus’ TGACGTCA to highly degenerate motifs where little more than a half-cite of site (i.e. TGACG) can effectively bind CREB. Furthermore, these studies have revealed that a large number of neuronally enriched coding genes are regulated by CREB in an activity-dependent manner. These genes, which include neurotransmitters, growth factors, transcription factors, signal transduction factors, and metabolic enzymes, have critical roles in neuronal development, plasticity and protection (Sassone-Corsi et al. 1988; Sgambato et al. 1998; Tao et al. 1998; Yagita and Okamura 2000; Fukuchi et al. 2005; St-Pierre et al. 2006), and as such, CREB has been implicated as a key signaling intermediate that couples neuronal activity to an array of functional outcomes. Of note, recent studies have revealed that non-coding small RNA transcription within the nervous system is also regulated by CREB. Along these lines, expression from the miR-132/212 locus is tightly regulated by CREB (Remenyi et al. 2010; Vo et al. 2005). Furthermore, CREB binding is also detected proximal to the miR219 locus, although its functional significance in miR219 expression has not been extensively examined (Cheng et al. 2007).

CREB in memory and plasticity

  1. Top of page
  2. Abstract
  3. CREB structure and regulation
  4. Additional CREB regulatory mechanisms
  5. CREB target genes
  6. CREB in memory and plasticity
  7. CREB in neuronal development and cell survival
  8. CREB regulation under physiological and pathophysiological conditions
  9. CREB and oxidative stress
  10. CREB and pre-conditioning-evoked neuroprotection
  11. CREB and disorders of the CNS
  12. Conclusion
  13. Acknowledgements
  14. References

Protein synthesis is an essential step for long term memory formation (Davis and Squire 1984), and work in a number of model systems has clearly established an underlying role for CREB/CRE-mediated transcription in this process. Along these lines, the first definitive work linking CREB to long-lasting changes in neuronal functional plasticity was performed in the mollusk Aplysia, where the induction of long-term, but not short-term, facilitation of the gill-withdrawal reflex was associated with CREB-mediated gene expression (Schacher et al. 1988; Dash et al. 1990; Kaang et al. 1993). The phylogenetic conservation of these findings was supported by work in another invertebrate system, the fruit fly Drosophila melanogaster, where the over-expression of an inducible dominant negative form of CREB led to a complete blockade of long-term olfactory memory (Yin et al. 1994).

These seminal observations provided a framework to begin to dissect the role of CREB in vertebrate synaptic plasticity and memory formation. Some of the most compelling work on this topic was performed using genetically modified loss- and gain-of function mouse models. For example, CREB α/δ knockout mice showed impaired memory formation in contextual fear conditioning, the Morris water maze, and socially transmitted food preferences (Bourtchuladze et al. 1994; Kogan et al. 1997). CREB was also shown to be involved in cued and contextual fear memory, spatial memory, olfactory memory, conditioned taste aversion memory, and object and social recognition memory (Bourtchuladze et al. 1994; Yin et al. 1994; Kogan et al. 1997, 2000; Lamprecht et al. 1997; Graves et al. 2002; Pittenger et al. 2002). Furthermore, using the CREB α/δ knockout mice as a platform, Han et al. (2007) showed that viral-mediated CREB delivery to the lateral amygdala completely rescued auditory fear memory impairment. Interestingly, these authors further found that the relative level of CREB activity at the time of learning is a key factor in determining whether a neuron was recruited into the memory trace. A caveat to some of these studies was the finding that the disruption CREB α and δ isoforms led to a compensatory up-regulation of CREB β expression (Blendy et al. 1996), as well as CREM (Hummler et al. 1994). However, other approaches which employed CREB antisense oligonucleotide-based infusion approaches, and transgenic approaches in which endogenous CREB is repressed via the expression of a dominant negative form of CREB (i.e. CREB-S133A and A-CREB) have reported similar deficits in plasticity and learning to those reported using the CREB α/δ knockout mice (Guzowski and McGaugh 1997; Kida et al. 2002; Jancic et al. 2009). As further support for CREB in neuronal plasticity and memory, mice that express a constitutively active form of CREB, VP16-CREB, show a lower threshold for the late-phase long-term potentiation in the Schaffer collateral pathway and an enhanced consolidation of context and cued fear memory (Barco et al. 2002; Viosca et al. 2009). Furthermore, within the hippocampus, the dephosphorylation of CREB at Ser 133 is associated with the induction of long-term depression (LTD) (Mauna et al. 2010; Thiels et al. 1998). These data, along with work by Impey et al. (1998) showing that a CRE-mediated reporter is activated by stimuli that induce learning and memory reveal a key role for CREB in mammalian memory formation.

Finally, it should be noted that the literature is not completely consistent on the role of CREB in synaptic plasticity and memory formation. Along these lines, work by Balschun et al. (2003) reported that the conditional disruption of all isoforms of CREB had only limited effects on hippocampal-dependent cognitive tasks, and no effect on long-term potentiation and LTD formation. Additionally, it should also be noted that effects observed in one brain region might not necessarily extend to other brain regions. Along these lines, in cerebellar purkinje neurons, CREB-mediated transcription has been implicated in the induction of the late phase of LTD (Ahn et al. 1999), a result that appears to be inconsistent with the role of CREB in the hippocampus. Although the precise reasons for these disparate physiological effects are not known, the key underlying function of CREB (converting short-term changes in neuronal activity into long-term changes in cellular function) is likely conserved throughout the CNS. Hence, whether CREB-mediated transcription initiates a new baseline state of cellular plasticity that either decreases or enhances synaptic efficacy likely depends on the underlying synaptic circuitry and cellular phenotypes.

CREB in neuronal development and cell survival

  1. Top of page
  2. Abstract
  3. CREB structure and regulation
  4. Additional CREB regulatory mechanisms
  5. CREB target genes
  6. CREB in memory and plasticity
  7. CREB in neuronal development and cell survival
  8. CREB regulation under physiological and pathophysiological conditions
  9. CREB and oxidative stress
  10. CREB and pre-conditioning-evoked neuroprotection
  11. CREB and disorders of the CNS
  12. Conclusion
  13. Acknowledgements
  14. References

CREB has a critical role in nervous system development, and in the neuroprotective response to pathophysiological effectors. Initial work indicating a role for CREB in development came from studies in which all CREB isoforms (i.e. alpha, beta, delta) were inactivated. CREB null mice died immediately after birth and exhibited marked central nervous system developmental defects including a reduction in the axon projections comprising the corpus callosum and the anterior commissures (Rudolph et al. 1998). However, no obvious increases in cell death were detected in the CNS (Lonze et al. 2002). This limited phenotypic effect may in part result from a compensatory up-regulation in the expression of CREM in the CNS (Rudolph et al. 1998). In support of this interpretation, the deletion of both Creb1 (all isoforms) and Crem resulted in marked apoptosis, causing a severe reduction of neuronal and glial precursors during CNS development (Mantamadiotis et al. 2002). Interestingly, in the developing peripheral nervous system, CREB null (i.e. alpha, beta, delta) mice show enhanced apoptosis and impaired growth of sensory neuron axons (Lonze et al. 2002). At a mechanistic level, this effect appears to be mediated by an inability of NGF to stimulate CREB-dependent pro-survival and axonal growth developmental programs (Riccio et al. 1999).

Within the mature CNS, CREB-mediated transcription is required for neuronal survival. For example, over-expression of dominant negative CREB (CREB S133A) in the cingulate cortex of adult mice results in significant apoptosis and cortical neurodegeneration (Ao et al. 2006). In addition, Mantamadiotis et al. (2002) showed that the postnatal deletion of both CREB and CREM led to hippocampal neurodegeneration in CA1 pyramidal cell layer, as well as a thinning of the dentate gyrus. Likewise, marked neuronal cell loss was detected in the dorsal striatum. This finding indicates that CREB has critical roles not only in neuronal differentiation and development but also in viability of post-mitotic neurons.

A substantial effort has been dedicated to unraveling the molecular mechanisms by which CREB regulates neuronal survival. Much of this work has centered on both the transcription of neurotrophins, such as BDNF, insulin-like growth factor 1 (IGF-I), pituitary adenylate cyclase-activating polypeptide, and leptin, all of which have been shown to affect neuronal survival and development (Maymo et al. 2010; Lambert et al. 2001; Tabuchi et al. 2002; Kingsbury et al. 2003; Fukuchi et al. 2005; Zhang and Chen 2008), and neurotrophin-regulation of CREB-mediated transcription. For example, within the peripheral nervous system, NGF and BDNF regulate sympathetic neuronal survival via CREB-mediated expression of the antiapoptotic gene B-cell lymphoma-2 (Riccio et al. 1999). Another CREB-regulated antiapoptotic gene, myeloid cell leukemia sequence 1, regulates apoptosis during CNS development and DNA damage-induced cell death (Wang et al. 1999; Arbour et al. 2008).

Given the essential role that CREB plays in nervous system physiology, it might be reasonable to assume that tonic up-regulation of CREB signaling would have beneficial effects. However, recent work has revealed deleterious consequences from sustained CREB activation. Indeed, using a tetracycline-inducible constitutively active VP16-CREB transgenic mouse model, Lopez de Armentia et al. (2007) showed that chronic activation of CRE-mediated gene expression (2–3 weeks) led to epileptic seizures and a marked loss of hippocampal neurons. Interestingly, neuronal degeneration resulting from CREB inhibition and CREB activation appears to occur through distinct mechanistic processes. Hence, inhibition of CREB triggers neuronal cell death via a pro-apoptotic process (Ao et al. 2006) and chronic CREB activation triggers cell death via an excitotoxic mechanism (Valor et al. 2010; Lopez de Armentia et al. 2007). Gene profiling indicated that chronic CREB activation stimulates the induction of cell stress and inflammatory genes, which likely actuate or contribute to the excitotoxic cell loss (Lopez de Armentia et al. 2007). These data provide important considerations for the development of therapeutic strategies designed to augment CREB-dependent transcription.

CREB regulation under physiological and pathophysiological conditions

  1. Top of page
  2. Abstract
  3. CREB structure and regulation
  4. Additional CREB regulatory mechanisms
  5. CREB target genes
  6. CREB in memory and plasticity
  7. CREB in neuronal development and cell survival
  8. CREB regulation under physiological and pathophysiological conditions
  9. CREB and oxidative stress
  10. CREB and pre-conditioning-evoked neuroprotection
  11. CREB and disorders of the CNS
  12. Conclusion
  13. Acknowledgements
  14. References

The examination of CREB phosphorylation at Ser 133 has provided useful insights into how physiological and pathophysiological levels of neuronal activity regulate CRE-mediated transcription. Central to this body of work is the idea that there are ‘permissive’ levels of neuronal activity, which allow robust CREB phosphorylation (and in turn CRE-mediated transcription), and that there are pathophysiological levels of neuronal activity that trigger CREB dephosphorylation, which in turn blocks neuroprotective CRE-mediated signaling. As a seminal work in this literature, Hardingham et al. (2002) showed that there are functionally distinct synaptic (neuroprotective) and extrasynaptic (excitotoxic) NMDA receptor complexes with oppositional effects on CREB phosphorylation, anti-apoptotic gene expression and cell viability. Paralleling this, Lee et al. (2005a) showed that excitotoxic levels of glutamate receptor activity selectively stimulate the phosphatase calcineurin, which leads to rapid CREB Ser 133 dephosphorylation (via PP1), and a blockade of CRE-mediated transcription. Interestingly, calcineurin inhibition attenuates glutamate toxicity and converts the transient glutamate-evoked increase in CREB phosphorylation into a long-lasting elevation (∼3 h). Taken to a whole-animal context, these studies would suggest that in response to excitotoxic challenges, neurons within an excitotoxic foci (i.e. the ‘core’ region) would exhibit limited CREB phosphorylation, whereas cells in ‘penumbral’ regions would exhibit elevated CREB phosphorylation, which would reflect a potentially neuroprotective response. Indeed, in a 3-NP model of Huntington’s disease (HD), CREB phosphorylation was potently repressed prior to cell death within the neurotoxic striatal core region, whereas robust CREB phosphorylation (as well as B-cell lymphoma-2 expression) was detected in the penumbral region (Choi et al. 2009). Likewise, in a cerebral ischemia model, both CREB phosphorylation and CRE-mediated gene expression were limited to penumbral regions (Irving et al. 2000; Sugiura et al. 2004). In something of a parallel to these studies, Walton and Dragunow (2000) used a hypoxic-ischemia model to show that CREB Ser 133 is selectively phosphorylated in dentate granule cells, a hippocampal cell layer which exhibits marked resistance to cell death.

Although CREB phosphorylation at Ser 133 is a useful marker of cell viability, there are many other phosphorylation sites on CREB (described above) that regulate CREB-dependent transcription and in turn, cell survival. Along these lines, it is worth restating that in response to genotoxic stress, CREB is phosphorylated at Ser 121 and Ser 271 by ATM and homeodomain-interacting protein kinase 2, respectively (Dodson and Tibbetts 2006; Sakamoto et al. 2010). Ser 121 phosphorylation inhibits CREB-dependent transcription, while Serine 271 phosphorylation activates it. Of note, Ser 271 phosphorylation-dependent transcription is independent of Ser 133 phosphorylation (Hailemariam et al. 2010). Collectively, these data suggest that there is a myriad of complex, context specific, kinase signaling events that regulate CREB-mediated neuroprotection.

CREB and oxidative stress

  1. Top of page
  2. Abstract
  3. CREB structure and regulation
  4. Additional CREB regulatory mechanisms
  5. CREB target genes
  6. CREB in memory and plasticity
  7. CREB in neuronal development and cell survival
  8. CREB regulation under physiological and pathophysiological conditions
  9. CREB and oxidative stress
  10. CREB and pre-conditioning-evoked neuroprotection
  11. CREB and disorders of the CNS
  12. Conclusion
  13. Acknowledgements
  14. References

In addition to the ability of CREB to regulate neuroprotection via the up-regulation of neurotrophins and anti-apoptotic genes, recent studies indicate that CREB also protects neurons via the regulation of reactive oxygen species (ROS) detoxification. Along these lines CREB has also been shown to stimulate the expression of antioxidant genes including heme oxygenase 1 (Gong et al. 2002; Kronke et al. 2003) and manganese superoxide dismutase (Kim et al. 1999). CREB also regulates a broad class of antioxidant genes via the inducible expression of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) (Herzig et al. 2001). St-Pierre et al. (2006) showed that CREB binds to the PGC-1α enhancer region and that hydrogen peroxide-induced PGC-1α expression is repressed by either mutating the CRE site or disruption of CREB binding.

The work of St. Pierre et al. was nicely supported in an in vivo investigation that employed an A-CREB transgenic mouse line. In this study, Lee et al. (2009) showed that the attenuation of CRE-mediated gene expression led to a marked increase in seizure-induced ROS production. Paralleling this, there was a reduction in both basal and inducible PGC-1α and heme oxygenase 1 expression. Importantly, seizure-induced cell death was significantly increased in A-CREB mice, relative to non-transgenic controls. Finally, in neuronal culture, disruption of CREB-mediated transcription significantly increased vulnerability to ROS-induced cell toxicity (Lee et al. 2009). These data suggest that CREB functions as an essential upstream effector of neuroprotective signaling against ROS-mediated cell toxicity.

CREB and pre-conditioning-evoked neuroprotection

  1. Top of page
  2. Abstract
  3. CREB structure and regulation
  4. Additional CREB regulatory mechanisms
  5. CREB target genes
  6. CREB in memory and plasticity
  7. CREB in neuronal development and cell survival
  8. CREB regulation under physiological and pathophysiological conditions
  9. CREB and oxidative stress
  10. CREB and pre-conditioning-evoked neuroprotection
  11. CREB and disorders of the CNS
  12. Conclusion
  13. Acknowledgements
  14. References

The ability of CREB to drive neuroprotective signaling in an activity-dependent manner raised the interesting prospect that CREB plays a key role in the well-characterized pre-conditioning response that attenuates the effects of subsequent toxic stimuli. Support for this idea has come from studies showing that CRE-mediated transcription is activated by ischemic pre-conditioning stimuli (Mabuchi et al. 2001). Furthermore, the disruptions of CRE-mediated gene expression, via the in vivo infusion of a CRE decoy oligonucleotide markedly diminished the effectiveness of a pre-conditioning stimulus (Hara et al. 2003). Similarly, Lee et al. (2009) showed that the efficacy of a BDNF ‘preconditioning’ microinjection against seizure-induced cell death was inhibited by the repression of CREB-mediated transcription. Together, these data clearly indicate that the CREB/CRE transcriptional pathway is an underlying route by which pre-conditioning exerts its neuroprotective effects.

CREB and disorders of the CNS

  1. Top of page
  2. Abstract
  3. CREB structure and regulation
  4. Additional CREB regulatory mechanisms
  5. CREB target genes
  6. CREB in memory and plasticity
  7. CREB in neuronal development and cell survival
  8. CREB regulation under physiological and pathophysiological conditions
  9. CREB and oxidative stress
  10. CREB and pre-conditioning-evoked neuroprotection
  11. CREB and disorders of the CNS
  12. Conclusion
  13. Acknowledgements
  14. References

CREB dysregulation has been implicated in a number of congenital as well as acquired disorders of the CNS, including Alzheimer’s disease, Parkinson’s disease, Huntington′s disease (HD), Rubinstein-Taybi syndrome, ischemia, alcoholism, schizophrenia, addiction, and depression (Walton and Dragunow 2000; Nucifora et al. 2001; Carlezon et al. 2005; Wand 2005; Chalovich et al. 2006; Ma et al. 2007; Roelfsema and Peters 2007; Sawamura et al. 2008).

Among these disorders, the relevance of CREB to the pathogenesis of HD has been most intensively investigated. HD is an autosomal dominant heritable disease that is characterized by anemia and uncontrolled body movements, which are associated with the degeneration of striatal medium spiny neurons. At a mechanistic level, inhibition of CREB-dependent transcription appears to be a principal mechanism by which mutant Huntingtin leads to HD (Semaka et al. 2006; Gil and Rego 2008). Mutant Huntingtin has been shown to interact with CBP and, in turn, repress CREB-dependent transcription (Nucifora et al. 2001). In an interesting parallel, genetic disruption of CREB leads to a pattern of striatal degeneration similar to that seen in HD (Mantamadiotis et al. 2002). Of note, another line of work has shown that CRE-mediated gene expression is enhanced in early stages of disease progression (Obrietan and Hoyt 2004), thus suggesting that mild striatal pathology leads to a protective program of CREB-dependent transcription, and that only during the later stages of the disease (ostensibly when CBP is sufficiently complexed) is CREB-dependent transcription repressed, thus accelerating disease progression.

Conclusion

  1. Top of page
  2. Abstract
  3. CREB structure and regulation
  4. Additional CREB regulatory mechanisms
  5. CREB target genes
  6. CREB in memory and plasticity
  7. CREB in neuronal development and cell survival
  8. CREB regulation under physiological and pathophysiological conditions
  9. CREB and oxidative stress
  10. CREB and pre-conditioning-evoked neuroprotection
  11. CREB and disorders of the CNS
  12. Conclusion
  13. Acknowledgements
  14. References

Collectively, these studies indicate that CREB is a key component of diverse physiological processes, including nervous system development, cell survival, plasticity, as well as learning and memory. Importantly, dysregulation of the CREB transcriptional cascade following an array of neurodegenerative disorders will likely lead to profound effects on cell viability and cognitive function: two processes that, to date, have limited or no prospect of treatment. The studies outlined here raise the possibility that carefully calibrated and targeted therapeutic strategies focusing on augmentation of CREB-mediated transcription may prove beneficial both for the enhancement of synaptic plasticity and the promotion of neuroprotection following CNS injury and various neuropathologies.

References

  1. Top of page
  2. Abstract
  3. CREB structure and regulation
  4. Additional CREB regulatory mechanisms
  5. CREB target genes
  6. CREB in memory and plasticity
  7. CREB in neuronal development and cell survival
  8. CREB regulation under physiological and pathophysiological conditions
  9. CREB and oxidative stress
  10. CREB and pre-conditioning-evoked neuroprotection
  11. CREB and disorders of the CNS
  12. Conclusion
  13. Acknowledgements
  14. References
  • Ahn S., Ginty D. D. and Linden D. J. (1999) A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB. Neuron 23, 559568.
  • Alberts A. S., Montminy M., Shenolikar S. and Feramisco J. R. (1994) Expression of a peptide inhibitor of protein phosphatase 1 increases phosphorylation and activity of CREB in NIH 3T3 fibroblasts. Mol. Cell. Biol. 14, 43984407.
  • Ao H., Ko S. W. and Zhuo M. (2006) CREB activity maintains the survival of cingulate cortical pyramidal neurons in the adult mouse brain. Mol. Pain. 2, 15.
  • Arbour N., Vanderluit J. L. and Le Grand J. N. et al. (2008) Mcl-1 is a key regulator of apoptosis during CNS development and after DNA damage. J. Neurosci. 28, 60686078.
  • Balschun D., Wolfer D. P., Gass P., Mantamadiotis T., Welzl H., Schutz G., Frey J. U. and Lipp H. P. (2003) Does cAMP response element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? J. Neurosci. 23, 63046314.
  • Barco A., Alarcon J. M. and Kandel E. R. (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108, 689703.
  • Bito H., Deisseroth K. and Tsien R. W. (1996) CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 12031214.
  • Blendy J. A., Kaestner K. H., Schmid W., Gass P. and Schutz G. (1996) Targeting of the CREB gene leads to up-regulation of a novel CREB mRNA isoform. EMBO J. 15, 10981106.
  • Bourtchuladze R., Frenguelli B., Blendy J., Cioffi D., Schutz G. and Silva A. J. (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 5968.
  • Bullock B. P. and Habener J. F. (1998) Phosphorylation of the cAMP response element binding protein CREB by cAMP-dependent protein kinase A and glycogen synthase kinase-3 alters DNA-binding affinity, conformation, and increases net charge. Biochemistry 37, 37953809.
  • Carlezon W. A., Jr, Duman R. S. and Nestler E. J. (2005) The many faces of CREB. Trends Neurosci. 28, 436445.
  • Chalovich E. M., Zhu J. H., Caltagarone J., Bowser R. and Chu C. T. (2006) Functional repression of cAMP response element in 6-hydroxydopamine-treated neuronal cells. J. Biol. Chem. 281, 1787017881.
  • Cheng H. Y., Papp J. W. and Varlamova O. et al. (2007) microRNA modulation of circadian-clock period and entrainment. Neuron 54, 813829.
  • Choi Y. S., Lee B., Cho H. Y., Reyes I. B., Pu X. A., Saido T. C., Hoyt K. R. and Obrietan K. (2009) CREB is a key regulator of striatal vulnerability in chemical and genetic models of Huntington’s disease. Neurobiol. Dis. 36, 259268.
  • Comerford K. M., Leonard M. O., Karhausen J., Carey R., Colgan S. P. and Taylor C. T. (2003) Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc. Natl Acad. Sci. USA 100, 986991.
  • Conkright M. D., Canettieri G., Screaton R., Guzman E., Miraglia L., Hogenesch J. B. and Montminy M. (2003a) TORCs: transducers of regulated CREB activity. Mol. Cell 12, 413423.
  • Conkright M. D., Guzman E., Flechner L., Su A. I., Hogenesch J. B. and Montminy M. (2003b) Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol. Cell 11, 11011108.
  • Cox L. J., Hengst U., Gurskaya N. G., Lukyanov K. A. and Jaffrey S. R. (2008) Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nat. Cell Biol. 10, 149159.
  • Dash P. K., Hochner B. and Kandel E. R. (1990) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345, 718721.
  • Davis H. P. and Squire L. R. (1984) Protein synthesis and memory: a review. Psychol. Bull. 96, 518559.
  • Deak M., Clifton A. D., Lucocq L. M. and Alessi D. R. (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17, 44264441.
  • Dodson G. E. and Tibbetts R. S. (2006) DNA replication stress-induced phosphorylation of cyclic AMP response element-binding protein mediated by ATM. J. Biol. Chem. 281, 16921697.
  • Don J. and Stelzer G. (2002) The expanding family of CREB/CREM transcription factors that are involved with spermatogenesis. Mol. Cell. Endocrinol. 187, 115124.
  • Du K. and Montminy M. (1998) CREB is a regulatory target for the protein kinase Akt/PKB. J. Biol. Chem. 273, 3237732379.
  • Euskirchen G., Royce T. E. and Bertone P. et al. (2004) CREB binds to multiple loci on human chromosome 22. Mol. Cell. Biol. 24, 38043814.
  • Fass D. M., Butler J. E. and Goodman R. H. (2003) Deacetylase activity is required for cAMP activation of a subset of CREB target genes. J. Biol. Chem. 278, 4301443019.
  • Felinski E. A. and Quinn P. G. (2001) The coactivator dTAF(II)110/hTAF(II)135 is sufficient to recruit a polymerase complex and activate basal transcription mediated by CREB. Proc. Natl Acad. Sci. USA 98, 1307813083.
  • Finsterwald C., Fiumelli H., Cardinaux J. R. and Martin J. L. (2010) Regulation of dendritic development by brain-derived neurotrophic factor (BDNF) requires activation of the CREB-regulated transcription coactivator 1 (CRTC1) by glutamate. J. Biol. Chem. 285, 2858728595.
  • Fiol C. J., Williams J. S., Chou C. H., Wang Q. M., Roach P. J. and Andrisani O. M. (1994) A secondary phosphorylation of CREB341 at Ser129 is required for the cAMP-mediated control of gene expression. A role for glycogen synthase kinase-3 in the control of gene expression. J. Biol. Chem. 269, 3218732193.
  • Fukuchi M., Tabuchi A. and Tsuda M. (2005) Transcriptional regulation of neuronal genes and its effect on neural functions: cumulative mRNA expression of PACAP and BDNF genes controlled by calcium and cAMP signals in neurons. J. Pharmacol. Sci. 98, 212218.
  • Gao J., Wang W. Y., Mao Y. W. et al. (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR 134. Nature466, 11051109.
  • Gau D., Lemberger T. and Von Gall C. et al. (2002) Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 34, 245253.
  • Gil J. M. and Rego A. C. (2008) Mechanisms of neurodegeneration in Huntington’s disease. Eur. J. Neurosci. 27, 28032820.
  • Ginty D. D., Bonni A. and Greenberg M. E. (1994) Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 77, 713725.
  • Gong P., Stewart D., Hu B., Vinson C. and Alam J. (2002) Multiple basic-leucine zipper proteins regulate induction of the mouse heme oxygenase-1 gene by arsenite. Arch. Biochem. Biophys. 405, 265274.
  • Gonzalez G. A. and Montminy M. R. (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59, 675680.
  • Graves L., Dalvi A., Lucki I., Blendy J. A. and Abel T. (2002) Behavioral analysis of CREB αbsl00084 mutation on a B6/129 F1 hybrid background. Hippocampus 12, 1826.
  • Grimes C. A. and Jope R. S. (2001) CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium. J. Neurochem. 78, 12191232.
  • De Groot R. P., Den Hertog J., Vandenheede J. R., Goris J. and Sassone-Corsi P. (1993) Multiple and cooperative phosphorylation events regulate the CREM activator function. EMBO J. 12, 39033911.
  • Guzowski J. F. and McGaugh J. L. (1997) Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc. Natl Acad. Sci. USA 94, 26932698.
  • Hailemariam K., Iwasaki K., Huang B. W., Sakamoto K. and Tsuji Y. (2010) Transcriptional regulation of ferritin and antioxidant genes by HIPK2 in genotoxic stress. J. Cell Sci. 123, 38633871.
  • Han J. H., Kushner S. A. and Yiu A. P. et al. (2007) Neuronal competition and selection during memory formation. Science 316, 457460.
  • Hara T., Hamada J., Yano S., Morioka M., Kai Y. and Ushio Y. (2003) CREB is required for acquisition of ischemic tolerance in gerbil hippocampal CA1 region. J. Neurochem. 86, 805814.
  • Hardingham G. E., Fukunaga Y. and Bading H. (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405414.
  • Herzig S., Long F. and Jhala U. S. et al. (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413, 179183.
  • Hummler E., Cole T. J., Blendy J. A., Ganss R., Aguzzi A., Schmid W., Beermann F. and Schutz G. (1994) Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc. Natl Acad. Sci. USA 91, 56475651.
  • Iguchi-Ariga S. M. and Schaffner W. (1989) CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 3, 612619.
  • Impey S., Smith D. M., Obrietan K., Donahue R., Wade C. and Storm D. R. (1998) Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat. Neurosci. 1, 595601.
  • Impey S., McCorkle S. R. and Cha-Molstad H. et al. (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119, 10411054.
  • Irving E. A., Barone F. C., Reith A. D., Hadingham S. J. and Parsons A. A. (2000) Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Brain Res. Mol. Brain Res. 77, 6575.
  • Jancic D., Lopez de Armentia M., Valor L. M., Olivares R. and Barco A. (2009) Inhibition of cAMP response element-binding protein reduces neuronal excitability and plasticity, and triggers neurodegeneration. Cereb. Cortex 19, 25352547.
  • Johannessen M., Delghandi M. P. and Moens U. (2004) What turns CREB on? Cell. Signal. 16, 12111227.
  • Kaang B. K., Kandel E. R. and Grant S. G. (1993) Activation of cAMP-responsive genes by stimuli that produce long-term facilitation in Aplysia sensory neurons. Neuron 10, 427435.
  • Kida S., Josselyn S. A., Pena de Ortiz S., Kogan J. H., Chevere I., Masushige S. and Silva A. J. (2002) CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 5, 348355.
  • Kim H. P., Roe J. H., Chock P. B. and Yim M. B. (1999) Transcriptional activation of the human manganese superoxide dismutase gene mediated by tetradecanoylphorbol acetate. J. Biol. Chem. 274, 3745537460.
  • Kim T. S., Kawaguchi M., Suzuki M., Jung C. G., Asai K., Shibamoto Y., Lavin M. F., Khanna K. K. and Miura Y. (2010) The ZFHX3 (ATBF1) transcription factor induces PDGFRB, which activates ATM in the cytoplasm to protect cerebellar neurons from oxidative stress. Dis. Model. Mech. 3, 752762.
  • Kingsbury T. J., Murray P. D., Bambrick L. L. and Krueger B. K. (2003) Ca(2+)-dependent regulation of TrkB expression in neurons. J. Biol. Chem. 278, 4074440748.
  • Kogan J. H., Frankland P. W., Blendy J. A., Coblentz J., Marowitz Z., Schutz G. and Silva A. J. (1997) Spaced training induces normal long-term memory in CREB mutant mice. Curr. Biol. 7, 111.
  • Kogan J. H., Frankland P. W. and Silva A. J. (2000) Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus 10, 4756.
  • Kornhauser J. M., Cowan C. W., Shaywitz A. J., Dolmetsch R. E., Griffith E. C., Hu L. S., Haddad C., Xia Z. and Greenberg M. E. (2002) CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 34, 221233.
  • Kronke G., Bochkov V. N., Huber J., Gruber F., Bluml S., Furnkranz A., Kadl A., Binder B. R. and Leitinger N. (2003) Oxidized phospholipids induce expression of human heme oxygenase-1 involving activation of cAMP-responsive element-binding protein. J. Biol. Chem. 278, 5100651014.
  • Lamarre-Vincent N. and Hsieh-Wilson L. C. (2003) Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J. Am. Chem. Soc. 125, 66126613.
  • Lambert H. W., Weiss E. R. and Lauder J. M. (2001) Activation of 5-HT receptors that stimulate the adenylyl cyclase pathway positively regulates IGF-I in cultured craniofacial mesenchymal cells. Dev. Neurosci. 23, 7077.
  • Lamprecht R., Hazvi S. and Dudai Y. (1997) cAMP response element-binding protein in the amygdala is required for long- but not short-term conditioned taste aversion memory. J. Neurosci. 17, 84438450.
  • Lee B., Butcher G. Q., Hoyt K. R., Impey S. and Obrietan K. (2005a) Activity-dependent neuroprotection and cAMP response element-binding protein (CREB): kinase coupling, stimulus intensity, and temporal regulation of CREB phosphorylation at serine 133. J. Neurosci. 25, 11371148.
  • Lee J., Kim C. H. and Simon D. K. et al. (2005b) Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J. Biol. Chem. 280, 4039840401.
  • Lee B., Cao R., Choi Y. S., Cho H. Y., Rhee A. D., Hah C. K., Hoyt K. R. and Obrietan K. (2009) The CREB/CRE transcriptional pathway: protection against oxidative stress-mediated neuronal cell death. J. Neurochem. 108, 12511265.
  • Lonze B. E., Riccio A., Cohen S. and Ginty D. D. (2002) Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34, 371385.
  • Lopez de Armentia M., Jancic D., Olivares R., Alarcon J. M., Kandel E. R. and Barco A. (2007) cAMP response element-binding protein-mediated gene expression increases the intrinsic excitability of CA1 pyramidal neurons. J. Neurosci. 27, 1390913918.
  • Lu Q., Hutchins A. E., Doyle C. M., Lundblad J. R. and Kwok R. P. (2003) Acetylation of cAMP-responsive element-binding protein (CREB) by CREB-binding protein enhances CREB-dependent transcription. J. Biol. Chem. 278, 1572715734.
  • Ma Q. L., Harris-White M. E., Ubeda O. J., Simmons M., Beech W., Lim G. P., Teter B., Frautschy S. A. and Cole G. M. (2007) Evidence of Aβ- and transgene-dependent defects in ERK-CREB signaling in Alzheimer’s models. J. Neurochem. 103, 15941607.
  • Mabuchi T., Kitagawa K. and Kuwabara K. et al. (2001) Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J. Neurosci. 21, 92049213.
  • Mantamadiotis T., Lemberger T. and Bleckmann S. C. et al. (2002) Disruption of CREB function in brain leads to neurodegeneration. Nat. Genet. 31, 4754.
  • Mauna J. C., Miyamae T., Pulli B. and Thiels E. (2010) Protein phosphatases 1 and 2A are both required for long-term depression and associated dephosphorylation of cAMP response element binding protein in hippocampal area CA1 in vivo. Hippocampus [Epub ahead of print].
  • Maymo J. L., Perez Perez A., Duenas J. L., Calvo J. C., Sanchez-Margalet V. and Varone C. L. (2010) Regulation of placental leptin expression by cyclic adenosine 5′-monophosphate involves cross talk between protein kinase A and mitogen-activated protein kinase signaling pathways. Endocrinology, 151, 37383751.
  • Mayr B. and Montminy M. (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599609.
  • McClung C. A. and Nestler E. J. (2003) Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat. Neurosci. 6, 12081215.
  • Montminy M. R. and Bilezikjian L. M. (1987) Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328, 175178.
  • Nucifora F. C., Jr, Sasaki M. and Peters M. F. et al. (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 24232428.
  • Obrietan K. and Hoyt K. R. (2004) CRE-mediated transcription is increased in Huntington’s disease transgenic mice. J. Neurosci. 24, 791796.
  • Parker D., Ferreri K., Nakajima T., LaMorte V. J., Evans R., Koerber S. C., Hoeger C. and Montminy M. R. (1996) Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol. Cell. Biol. 16, 694703.
  • Pigazzi M., Manara E., Baron E. and Basso G. (2009) miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res. 69, 24712478.
  • Pittenger C., Huang Y. Y., Paletzki R. F., Bourtchouladze R., Scanlin H., Vronskaya S. and Kandel E. R. (2002) Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron 34, 447462.
  • Remenyi J., Hunter C. J. and Cole C. et al. (2010) Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem. J., 428, 281291.
  • Riccio A., Ahn S., Davenport C. M., Blendy J. A. and Ginty D. D. (1999) Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 23582361.
  • Roelfsema J. H. and Peters D. J. (2007) Rubinstein-Taybi syndrome: clinical and molecular overview. Expert Rev. Mol. Med. 9, 116.
  • Rudolph D., Tafuri A., Gass P., Hammerling G. J., Arnold B. and Schutz G. (1998) Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc. Natl Acad. Sci. USA 95, 44814486.
  • Sakamoto K., Huang B. W., Iwasaki K., Hailemariam K., Ninomiya-Tsuji J. and Tsuji Y. (2010) Regulation of genotoxic stress response by homeodomain-interacting protein kinase 2 through phosphorylation of cyclic AMP response element-binding protein at serine 271. Mol. Biol. Cell 21, 29662974.
  • Sassone-Corsi P., Visvader J., Ferland L., Mellon P. L. and Verma I. M. (1988) Induction of proto-oncogene fos transcription through the adenylate cyclase pathway: characterization of a cAMP-responsive element. Genes Dev. 2, 15291538.
  • Sawamura N., Ando T. and Maruyama Y. et al. (2008) Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly. Mol. Psychiatry 13, 11381148, 1069.
  • Schacher S., Castellucci V. F. and Kandel E. R. (1988) cAMP evokes long-term facilitation in Aplysia sensory neurons that requires new protein synthesis. Science 240, 16671669.
  • Schumacher M. A., Goodman R. H. and Brennan R. G. (2000) The structure of a CREB bZIP.somatostatin CRE complex reveals the basis for selective dimerization and divalent cation-enhanced DNA binding. J. Biol. Chem. 275, 3524235247.
  • Semaka A., Creighton S., Warby S. and Hayden M. R. (2006) Predictive testing for Huntington disease: interpretation and significance of intermediate alleles. Clin. Genet. 70, 283294.
  • Sgambato V., Pages C., Rogard M., Besson M. J. and Caboche J. (1998) Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J. Neurosci. 18, 88148825.
  • Shanware N. P., Trinh A. T., Williams L. M. and Tibbetts R. S. (2007) Coregulated ataxia telangiectasia-mutated and casein kinase sites modulate cAMP-response element-binding protein-coactivator interactions in response to DNA damage. J. Biol. Chem. 282, 62836291.
  • St-Pierre J., Drori S. and Uldry M. et al. (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127, 397408.
  • Sugiura S., Kitagawa K., Omura-Matsuoka E., Sasaki T., Tanaka S., Yagita Y., Matsushita K., Storm D. R. and Hori M. (2004) CRE-mediated gene transcription in the peri-infarct area after focal cerebral ischemia in mice. J. Neurosci. Res. 75, 401407.
  • Sun P., Enslen H., Myung P. S. and Maurer R. A. (1994) Differential activation of CREB by Ca2 + /calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8, 25272539.
  • Tabuchi A., Sakaya H., Kisukeda T., Fushiki H. and Tsuda M. (2002) Involvement of an upstream stimulatory factor as well as cAMP-responsive element-binding protein in the activation of brain-derived neurotrophic factor gene promoter I. J. Biol. Chem. 277, 3592035931.
  • Tan Y., Rouse J., Zhang A., Cariati S., Cohen P. and Comb M. J. (1996) FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J. 15, 46294642.
  • Tao X., Finkbeiner S., Arnold D. B., Shaywitz A. J. and Greenberg M. E. (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20, 709726.
  • Taylor C. T., Furuta G. T., Synnestvedt K. and Colgan S. P. (2000) Phosphorylation-dependent targeting of cAMP response element binding protein to the ubiquitin/proteasome pathway in hypoxia. Proc. Natl Acad. Sci. USA 97, 1209112096.
  • Thiels E., Norman E. D., Barrionuevo G. and Klann E. (1998) Transient and persistent increases in protein phosphatase activity during long-term depression in the adult hippocampus in vivo. Neuroscience 86, 10231029.
  • Valor L. M., Jancic D., Lujan R. and Barco A. (2010) Ultrastructural and transcriptional profiling of neuropathological misregulation of CREB function. Cell Death Differ. 17, 16361644.
  • Viosca J., Lopez de Armentia M., Jancic D. and Barco A. (2009) Enhanced CREB-dependent gene expression increases the excitability of neurons in the basal amygdala and primes the consolidation of contextual and cued fear memory. Learn. Mem. 16, 193197.
  • Vo N., Klein M. E., Varlamova O., Keller D. M., Yamamoto T., Goodman R. H. and Impey S. (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl Acad. Sci. USA 102, 1642616431.
  • Wadzinski B. E., Wheat W. H., Jaspers S., Peruski Jr. L. F., Lickteig R. L., Johnson G. L. and Klemm D. J. (1993) Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. Mol. Cell. Biol. 13, 28222834.
  • Walton M. R. and Dragunow I. (2000) Is CREB a key to neuronal survival? Trends Neurosci. 23, 4853.
  • Wand G. (2005) The anxious amygdala: CREB signaling and predisposition to anxiety and alcoholism. J. Clin. Invest. 115, 26972699.
  • Wang J. M., Chao J. R., Chen W., Kuo M. L., Yen J. J. and Yang-Yen H. F. (1999) The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol. Cell. Biol. 19, 61956206.
  • Wu X. and McMurray C. T. (2001) Calmodulin kinase II attenuation of gene transcription by preventing cAMP response element-binding protein (CREB) dimerization and binding of the CREB-binding protein. J. Biol. Chem. 276, 17351741.
  • Xing J., Ginty D. D. and Greenberg M. E. (1996) Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273, 959963.
  • Yagita K. and Okamura H. (2000) Forskolin induces circadian gene expression of rPer1, rPer2 and dbp in mammalian rat-1 fibroblasts. FEBS Lett. 465, 7982.
  • Yin J. C., Wallach J. S., Del Vecchio M., Wilder E. L., Zhou H., Quinn W. G. and Tully T. (1994) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 4958.
  • Yossifoff M., Kisliouk T. and Meiri N. (2008) Dynamic changes in DNA methylation during thermal control establishment affect CREB binding to the brain-derived neurotrophic factor promoter. Eur. J. Neurosci. 28, 22672277.
  • Zhang F. and Chen J. (2008) Leptin protects hippocampal CA1 neurons against ischemic injury. J. Neurochem. 107, 578587.
  • Zhang X., Odom D. T. and Koo S. H. et al. (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl Acad. Sci. USA 102, 44594464.
  • Zhou Y., Wu H., Li S., Chen Q., Cheng X. W., Zheng J., Takemori H. and Xiong Z. Q. (2006) Requirement of TORC1 for late-phase long-term potentiation in the hippocampus. PLoS ONE 1, e16.