SEARCH

SEARCH BY CITATION

References

  • Adlard P. A., Cherny R. A. and Finkelstein D. I. et al. (2008) Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aβ. Neuron 59, 4355.
  • Baum L., Lam C. W. and Cheung S. K. et al. (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J. Clin. Psychopharmacol. 28, 110113.
  • Blennow K., de Leon M. J. and Zetterberg H. (2006) Alzheimer’s disease. Lancet 368, 387403.
  • Burdick D., Soreghan B., Kwon M., Kosmoski J., Knauer M., Henschen A., Yates J., Cotman C. and Glabe C. (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/β amyloid peptide analogs. J. Biol. Chem. 267, 546554.
  • Busciglio J., Lorenzo A. and Yankner B. A. (1992) Methodological variables in the assessment of β amyloid neurotoxicity. Neurobiol. Aging 13, 609612.
  • Bush A. I. (2002) Metal complexing agents as therapies for Alzheimer’s disease. Neurobiol. Aging 23, 10311038.
  • Castano E. M., Ghiso J., Prelli F., Gorevic P. D., Migheli A. and Frangione B. (1986) In vitro formation of amyloid fibrils from two synthetic peptides of different lengths homologous to Alzheimer’s disease β-protein. Biochem. Biophys. Res. Commun. 141, 782789.
  • Chapman P. F., White G. L. and Jones M. W. et al. (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat. Neurosci. 2, 271276.
  • Cheng I. H., Scearce-Levie K. and Legleiter J. et al. (2007) Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem. 282, 2381823828.
  • Cherny R. A., Atwood C. S. and Xilinas M. E. et al. (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30, 665676.
  • Conway K. A., Lee S. J., Rochet J. C., Ding T. T., Williamson R. E. and Lansbury Jr P. T. (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl Acad. Sci. USA 97, 571576.
  • Dahlgren K. N., Manelli A. M., Stine Jr W. B., Baker L. K., Krafft G. A. and LaDu M. J. (2002) Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J. Biol. Chem. 277, 3204632053.
  • Dickson D. W., Crystal H. A., Bevona C., Honer W., Vincent I. and Davies P. (1995) Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol. Aging 16, 285298; discussion 298–304.
  • Dineley K. T., Xia X., Bui D., Sweatt J. D. and Zheng H. (2002) Accelerated plaque accumulation, associative learning deficits, and up-regulation of α 7 nicotinic receptor protein in transgenic mice co-expressing mutant human presenilin 1 and amyloid precursor proteins. J. Biol. Chem. 277, 2276822780.
  • Dorozynski A. (1997) Wine may prevent dementia. BMJ 314, 997.
  • Enya M., Morishima-Kawashima M. and Yoshimura M. et al. (1999) Appearance of sodium dodecyl sulfate-stable amyloid β-protein (Aβ) dimer in the cortex during aging. Am. J. Pathol. 154, 271279.
  • Frautschy S. A. and Cole G. M. (2010) Why pleiotropic interventions are needed for Alzheimer’s disease. Mol. Neurobiol. 41, 392409.
  • Freir D. B., Fedriani R., Scully D., Smith I. M., Selkoe D. J., Walsh D. M. and Regan C. M. (2010) Aβ oligomers inhibit synapse remodelling necessary for memory consolidation. Neurobiol. Aging in press.
  • Funato H., Yoshimura M., Kusui K., Tamaoka A., Ishikawa K., Ohkoshi N., Namekata K., Okeda R. and Ihara Y. (1998) Quantitation of amyloid β-protein (Aβ) in the cortex during aging and in Alzheimer’s disease. Am. J. Pathol. 152, 16331640.
  • Funato H., Enya M., Yoshimura M., Morishima-Kawashima M. and Ihara Y. (1999) Presence of sodium dodecyl sulfate-stable amyloid β-protein dimers in the hippocampus CA1 not exhibiting neurofibrillary tangle formation. Am. J. Pathol. 155, 2328.
  • Gervais F., Paquette J. and Morissette C. et al. (2007) Targeting soluble Aβ peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol. Aging 28, 537547.
  • Geula C., Wu C. K., Saroff D., Lorenzo A., Yuan M. and Yankner B. A. (1998) Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nat. Med. 4, 827831.
  • Haass C. and Selkoe D. J. (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101112.
  • Haass C., Koo E. H., Mellon A., Hung A. Y. and Selkoe D. J. (1992) Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357, 500503.
  • Hamaguchi T., Ono K., Murase A. and Yamada M. (2009) Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-β aggregation pathway. Am. J. Pathol. 175, 25572565.
  • Hamaguchi T., Ono K. and Yamada M. (2010) Curcumin and Alzheimer’s Disease. CNS Neurosci. Ther. 16, 285297.
  • Hardy J. and Selkoe D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353356.
  • Hartley D. M., Walsh D. M., Ye C. P., Diehl T., Vasquez S., Vassilev P. M., Teplow D. B. and Selkoe D. J. (1999) Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 19, 88768884.
  • Hirakura Y., Azimov R., Azimova R. and Kagan B. L. (2000) Polyglutamine-induced ion channels: a possible mechanism for the neurotoxicity of Huntington and other CAG repeat diseases. _J. Neurosci. Res. 60, 490494.
  • Hirohata M., Hasegawa K., Tsutsumi-Yasuhara S., Ohhashi Y., Ookoshi T., Ono K., Yamada M. and Naiki H. (2007) The anti-amyloidogenic effect is exerted against Alzheimer’s β-amyloid fibrils in vitro by preferential and reversible binding of flavonoids to the amyloid fibril structure. Biochemistry 46, 18881899.
  • Hsia A. Y., Masliah E. and McConlogue L. et al. (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc. Natl Acad. Sci. USA 96, 32283233.
  • Hu N. W., Smith I. M., Walsh D. M. and Rowan M. J. (2008) Soluble amyloid-β peptides potently disrupt hippocampal synaptic plasticity in the absence of cerebrovascular dysfunction in vivo. Brain 131, 24142424.
  • Ida N., Hartmann T., Pantel J., Schroder J., Zerfass R., Forstl H., Sandbrink R., Masters C. L. and Beyreuther K. (1996) Analysis of heterogeneous A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. J. Biol. Chem. 271, 2290822914.
  • Ikeda T., Ono K., Elashoff D., Condron M. M., Noguchi-Shinohara M., Yoshita M., Teplow D. B. and Yamada M. (2010) Cerebrospinal fluid from Alzheimer’s disease patients promotes amyloid β-protein oligomerization. J. Alzheimers Dis. 21, 8186.
  • Jacobsen J. S., Wu C. C. and Redwine J. M. et al. (2006) Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 103, 51615166.
  • Jarrett J. T., Berger E. P. and Lansbury Jr P. T. (1993) The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32, 46934697.
  • Katzman R. (1986) Alzheimer’s disease. N. Engl. J. Med. 314, 964973.
  • Kirkitadze M. D., Bitan G. and Teplow D. B. (2002) Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J. Neurosci. Res. 69, 567577.
  • Kirschner D. A., Inouye H., Duffy L. K., Sinclair A., Lind M. and Selkoe D. J. (1987) Synthetic peptide homologous to β protein from Alzheimer disease forms amyloid-like fibrils in vitro. Proc. Natl Acad. Sci. USA 84, 69536957.
  • Klein W. L., Krafft G. A. and Finch C. E. (2001) Targeting small Aβ oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci. 24, 219224.
  • Klein W. L., Stine Jr W. B. and Teplow D. B. (2004) Small assemblies of unmodified amyloid β-protein are the proximate neurotoxin in Alzheimer’s disease. Neurobiol. Aging 25, 569580.
  • Klyubin I., Walsh D. M., Cullen W. K., Fadeeva J. V., Anwyl R., Selkoe D. J. and Rowan M. J. (2004) Soluble Arctic amyloid β protein inhibits hippocampal long-term potentiation in vivo. Eur. J. Neurosci. 19, 28392846.
  • Klyubin I., Walsh D. M. and Lemere C. A. et al. (2005) Amyloid β protein immunotherapy neutralizes Aβ oligomers that disrupt synaptic plasticity in vivo. Nat. Med. 11, 556561.
  • Klyubin I., Betts V. and Welzel A. T. et al. (2008) Amyloid β protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J. Neurosci. 28, 42314237.
  • Kuo W. L., Gehm B. D. and Rosner M. R. (1990) Cloning and expression of the cDNA for a Drosophila insulin-degrading enzyme. Mol. Endocrinol. 4, 15801591.
  • Lambert M. P., Barlow A. K. and Chromy B. A. et al. (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA 95, 64486453.
  • Lannfelt L., Blennow K. and Zetterberg H. et al. (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 7, 779786.
  • Lesne S., Koh M. T., Kotilinek L., Kayed R., Glabe C. G., Yang A., Gallagher M. and Ashe K. H. (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352357.
  • Letenneur L., Dartigues J. F. and Orgogozo J. M. (1993) Wine consumption in the elderly. Ann. Intern. Med. 118, 317318.
  • Li S., Hong S., Shepardson N. E., Walsh D. M., Shankar G. M. and Selkoe D. (2009) Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62, 788801.
  • Lim G. P., Chu T., Yang F., Beech W., Frautschy S. A. and Cole G. M. (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 21, 83708377.
  • Lue L. F., Kuo Y. M. and Roher A. E. et al. (1999) Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am. J. Pathol. 155, 853862.
  • Mc Donald J. M., Savva G. M., Brayne C., Welzel A. T., Forster G., Shankar G. M., Selkoe D. J., Ince P. G. and Walsh D. M. (2010) The presence of sodium dodecyl sulphate-stable Aβ dimers is strongly associated with Alzheimer-type dementia. Brain 133, 13281341.
  • McLaurin J., Kierstead M. E. and Brown M. E. et al. (2006) Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat. Med. 12, 801808.
  • McLean C. A., Cherny R. A., Fraser F. W., Fuller S. J., Smith M. J., Beyreuther K., Bush A. I. and Masters C. L. (1999) Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46, 860866.
  • Meier J. J., Kayed R., Lin C. Y., Gurlo T., Haataja L., Jayasinghe S., Langen R., Glabe C. G. and Butler P. C. (2006) Inhibition of human IAPP fibril formation does not prevent β-cell death: evidence for distinct actions of oligomers and fibrils of human IAPP. Am. J. Physiol. Endocrinol. Metab. 291, E1317E1324.
  • Moechars D., Dewachter I. and Lorent K. et al. (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J. Biol. Chem. 274, 64836492.
  • Morishima-Kawashima M. and Ihara Y. (1998) The presence of amyloid β-protein in the detergent-insoluble membrane compartment of human neuroblastoma cells. Biochemistry 37, 1524715253.
  • Mucke L., Masliah E. and Yu G. Q. et al. (2000) High-level neuronal expression of Aβ 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20, 40504058.
  • Oda T., Wals P. and Osterburg H. H. et al. (1995) Clusterin (apoJ) alters the aggregation of amyloid β-peptide (Aβ 1–42) and forms slowly sedimenting Aβ complexes that cause oxidative stress. Exp. Neurol. 136, 2231.
  • Oddo S., Caccamo A., Tran L., Lambert M. P., Glabe C. G., Klein W. L. and LaFerla F. M. (2006) Temporal profile of amyloid-β (Aβ) oligomerization in an in vivo model of Alzheimer disease. A link between Aβ and tau pathology. J. Biol. Chem. 281, 15991604.
  • Ono K., Yoshiike Y., Takashima A., Hasegawa K., Naiki H. and Yamada M. (2003) Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J. Neurochem. 87, 172181.
  • Ono K., Hasegawa K., Naiki H. and Yamada M. (2004a) Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer’s β-amyloid fibrils in vitro. Biochim. Biophys. Acta 1690, 193202.
  • Ono K., Hasegawa K., Naiki H. and Yamada M. (2004b) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. J. Neurosci. Res. 75, 742750.
  • Ono K., Naiki H. and Yamada M. (2006) The development of preventives and therapeutics for Alzheimer’s disease that inhibit the formation of β-amyloid fibrils (fAβ), as well as destabilize preformed fAβ. Curr. Pharm. Des. 12, 43574375.
  • Ono K., Condron M. M., Ho L., Wang J., Zhao W., Pasinetti G. M. and Teplow D. B. (2008) Effects of grape seed-derived polyphenols on amyloid β-protein self-assembly and cytotoxicity. J. Biol. Chem. 283, 3217632187.
  • Ono K., Condron M. M. and Teplow D. B. (2009) Structure-neurotoxicity relationships of amyloid β-protein oligomers. Proc. Natl Acad. Sci. USA 106, 1474514750.
  • Ono K., Condron M. M. and Teplow D. B. (2010) Effects of the English (H6R) and Tottori (D7N) familial Alzheimer disease mutations on amyloid β-protein assembly and toxicity. J. Biol. Chem. 285, 2318623197.
  • Orgogozo J. M., Dartigues J. F., Lafont S., Letenneur L., Commenges D., Salamon R., Renaud S. and Breteler M. B. (1997) Wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area. Rev. Neurol. (Paris) 153, 185192.
  • Pike C. J., Walencewicz A. J., Glabe C. G. and Cotman C. W. (1991) In vitro aging of β-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res. 563, 311314.
  • Podlisny M. B., Ostaszewski B. L., Squazzo S. L., Koo E. H., Rydell R. E., Teplow D. B. and Selkoe D. J. (1995) Aggregation of secreted amyloid β-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J. Biol. Chem. 270, 95649570.
  • Ringman J. M., Frautschy S. A., Cole G. M., Masterman D. L. and Cummings J. L. (2005) A potential role of the curry spice curcumin in Alzheimer’s disease. Curr. Alzheimer Res. 2, 131136.
  • Ringman J. M., Cole G. M., Tend E. et al. (2008) Oral curcumin for the treatment of mild-to-moderate Alzheimer’s disease: tolerability and clinical and biomarker efficacy results of a placebo-controlled 24-week study, in Proceedings of the Abstract of International Comference on Alzheimer’s Disease July 26–31, 2008, Alzheimer’s & Dementia 4(Suppl 2), T774.
  • Ritchie C. W., Bush A. I. and Mackinnon A. et al. (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch. Neurol. 60, 16851691.
  • Roher A. E., Chaney M. O. and Kuo Y. M. et al. (1996) Morphology and toxicity of Aβ-(1–42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J. Biol. Chem. 271, 2063120635.
  • Roychaudhuri R., Yang M., Hoshi M. M. and Teplow D. B. (2009) Amyloid β-protein assembly and Alzheimer disease. J. Biol. Chem. 284, 47494753.
  • Seubert P., Vigo-Pelfrey C. and Esch F. et al. (1992) Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature 359, 325327.
  • Shankar G. M., Bloodgood B. L., Townsend M., Walsh D. M., Selkoe D. J. and Sabatini B. L. (2007) Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci. 27, 28662875.
  • Shankar G. M., Li S. and Mehta T. H. et al. (2008) Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med. 14, 837842.
  • Shoji M., Golde T. E. and Ghiso J. et al. (1992) Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science 258, 126129.
  • Stenh C., Englund H. and Lord A. et al. (2005) Amyloid-β oligomers are inefficiently measured by enzyme-linked immunosorbent assay. Ann. Neurol. 58, 147150.
  • Terry R. D., Masliah E., Salmon D. P., Butters N., DeTeresa R., Hill R., Hansen L. A. and Katzman R. (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572580.
  • Tomiyama T., Matsuyama S. and Iso H. et al. (2010) A mouse model of amyloid β oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J. Neurosci. 30, 48454856.
  • Townsend M., Shankar G. M., Mehta T., Walsh D. M. and Selkoe D. J. (2006) Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers. J. Physiol. 572, 477492.
  • Truelsen T., Thudium D. and Gronbaek M. (2002) Amount and type of alcohol and risk of dementia: the Copenhagen City Heart Study. Neurology 59, 13131319.
  • Tschape J. A. and Hartmann T. (2006) Therapeutic perspectives in Alzheimer’s disease. Recent Pat. CNS Drug Discov. 1, 119127.
  • Vigo-Pelfrey C., Lee D., Keim P., Lieberburg I. and Schenk D. B. (1993) Characterization of β-amyloid peptide from human cerebrospinal fluid. J. Neurochem. 61, 19651968.
  • Walsh D. M. and Selkoe D. J. (2007) Aβ oligomers – a decade of discovery. J. Neurochem. 101, 11721184.
  • Walsh D. M., Tseng B. P., Rydel R. E., Podlisny M. B. and Selkoe D. J. (2000) The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain. Biochemistry 39, 1083110839.
  • Walsh D. M., Klyubin I., Fadeeva J. V., Cullen W. K., Anwyl R., Wolfe M. S., Rowan M. J. and Selkoe D. J. (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535539.
  • Walsh D. M., Townsend M., Podlisny M. B., Shankar G. M., Fadeeva J. V., El Agnaf O., Hartley D. M. and Selkoe D. J. (2005) Certain inhibitors of synthetic amyloid β-peptide (Aβ) fibrillogenesis block oligomerization of natural Aβ and thereby rescue long-term potentiation. J. Neurosci. 25, 24552462.
  • Wang J., Dickson D. W., Trojanowski J. Q. and Lee V. M. (1999) The levels of soluble versus insoluble brain Aβ distinguish Alzheimer’s disease from normal and pathologic aging. Exp. Neurol. 158, 328337.
  • Wang H. W., Pasternak J. F. and Kuo H. et al. (2002) Soluble oligomers of β amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res. 924, 133140.
  • Wang J., Ho L., Zhao W., Ono K., Rosensweig C., Chen L., Humala N., Teplow D. B. and Pasinetti G. M. (2008) Grape-derived polyphenolics prevent Aβ oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J. Neurosci. 28, 63886392.
  • Wang J., Santa-Maria I., Ho L., Ksiezak-Reding H., Ono K., Teplow D. B. and Pasinetti G. M. (2010) Grape derived polyphenols attenuate tau neuropathology in a mouse model of Alzheimer’s disease. J. Alzheimers Dis. 22, 653661.
  • Westerman M. A., Cooper-Blacketer D., Mariash A., Kotilinek L., Kawarabayashi T., Younkin L. H., Carlson G. A., Younkin S. G. and Ashe K. H. (2002) The relationship between Aβ and memory in the Tg2576 mouse model of Alzheimer’s disease. J. Neurosci. 22, 18581867.
  • Wright T. M. (2006) Tramiprosate. Drugs Today (Barc) 42, 291298.
  • Wu C. C., Chawla F., Games D., Rydel R. E., Freedman S., Schenk D., Young W. G., Morrison J. H. and Bloom F. E. (2004) Selective vulnerability of dentate granule cells prior to amyloid deposition in PDAPP mice: digital morphometric analyses. Proc. Natl Acad. Sci. USA 101, 71417146.
  • Xia W., Yang T., Shankar G., Smith I. M., Shen Y., Walsh D. M. and Selkoe D. J. (2009) A specific enzyme-linked immunosorbent assay for measuring β-amyloid protein oligomers in human plasma and brain tissue of patients with Alzheimer disease. Arch. Neurol. 66, 190199.
  • Yamin G., Ono K., Inayathullah M. and Teplow D. B. (2008) Amyloid β-protein assembly as a therapeutic target of Alzheimer’s disease. Curr. Pharm. Des. 14, 32313246.
  • Yang F., Lim G. P. and Begum A. N. et al. (2005) Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 280, 58925901.