SEARCH

SEARCH BY CITATION

References

  • Ahn K., Shelton C. C., Tian Y., Zhang X., Gilchrist M. L., Sisodia S. S. and Li Y. M. (2010) Activation and intrinsic γ-secretase activity of presenilin 1. Proc. Natl Acad. Sci. USA 50, 2143521440.
  • Amour A., Slocombe P. M., Webster A. et al. (1998) TNF-α converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett. 435, 3944.
  • Amour A., Knight C. G., Webster A., Slocombe P. M., Stephens P. E., Knauper V., Docherty A. J. and Murphy G. (2000) The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett. 473, 275279.
  • von Arnim C. A., Kinoshita A., Peltan I. D. et al. (2005) The low density lipoprotein receptor-related protein (LRP) is a novel β-secretase (BACE1) substrate. J. Biol. Chem. 280, 1777717785.
  • Baumeister R., Leimer U., Zweckbronner I., Jakubek C., Grünberg J. and Haass C. (1997) Human presenilin-1, but not familial Alzheimer’s disease (FAD) mutants, facilitate Caenorhabditis elegans Notch signalling independently of proteolytic processing. Genes Funct. 1, 149159.
    Direct Link:
  • Bennett B. D., Denis P., Haniu M., Teplow D. B., Kahn S., Louis J. C., Citron M. and Vassar R. (2000) A furin-like convertase mediates propeptide cleavage of BACE, the Alzheimer’s β-secretase. J. Biol. Chem. 275, 3771237717.
  • Black R. A., Rauch C. T., Kozlosky C. J. et al. (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385, 729733.
  • Bozkulak E. C. and Weinmaster G. (2009) Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol. Cell. Biol. 29, 56795695.
  • Brown M. S., Ye J., Rawson R. B. and Goldstein J. L. (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391398.
  • Buxbaum J. D., Liu K. N., Luo Y., Slack J. L., Stocking K. L., Peschon J. J., Johnson R. S., Castner B. J., Cerretti D. P. and Black R. A. (1998) Evidence that tumor necrosis factor α converting enzyme is involved in regulated α-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. 273, 2776527767.
  • Caescu C. I., Jeschke G. R. and Turk B. E. (2009) Active-site determinants of substrate recognition by the metalloproteinases TACE and ADAM10. Biochem. J. 424, 7988.
  • Cao X. and Sudhof T. C. (2001) A transcriptionally active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115120.
  • Cao X. and Sudhof T. C. (2004) Dissection of amyloid-β precursor protein-dependent transcriptional transactivation. J. Biol. Chem. 279, 2460124611.
  • Capell A., Grunberg J., Pesold B., Diehlmann A., Citron M., Nixon R., Beyreuther K., Selkoe D. J. and Haass C. (1998) The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100-150-kDa molecular mass complex. J. Biol. Chem. 273, 32053211.
  • Capell A., Steiner H., Willem M., Kaiser H., Meyer C., Walter J., Lammich S., Multhaup G. and Haass C. (2000) Maturation and pro-peptide cleavage of β-secretase. J. Biol. Chem. 275, 3084930854.
  • Capell A., Beher D., Prokop S., Steiner H., Kaether C., Shearman M. S. and Haass C. (2005) γ-Secretase complex assembly within the early secretory pathway. J. Biol. Chem. 280, 64716478.
  • Chang W. P., Downs D., Huang X. P., Da H., Fung K. M. and Tang J. (2007) Amyloid-β reduction by memapsin 2 (β-secretase) immunization. FASEB J. 21, 31843196.
  • Chavez-Gutierrez L., Tolia A., Maes E., Li T., Wong P. C. and de Strooper B. (2008) Glu332 in the nicastrin ectodomain Is essential for γ-secretase complex maturation but not for its activity. J. Biol. Chem. 283, 2009620105.
  • Chen F., Hasegawa H., Schmitt-Ulms G. et al. (2006) TMP21 is a presenilin complex component that modulates γ-secretase but not ε-secretase activity. Nature 440, 12081212.
  • Chen A. C., Guo L. Y., Ostaszewski B. L., Selkoe D. J. and LaVoie M. J. (2010) Aph-1 associates directly with full-length and C-terminal fragments of γ-secretase substrates. J. Biol. Chem. 285, 1137811391.
  • Cheng H., Vetrivel K. S., Drisdel R. C. et al. (2009) S-palmitoylation of γ-secretase subunits nicastrin and APH-1. J. Biol. Chem. 284, 13731384.
  • Citron M. (2010) Alzheimer’s disease: strategies for disease modification. Nat. Rev. Drug Discov. 9, 387398.
  • Citron M., Teplow D. B. and Selkoe D. J. (1995) Generation of amyloid β protein from its precursor is sequence specific. Neuron 14, 661670.
  • Creemers J. W., Ines Dominguez D., Plets E., Serneels L., Taylor N. A., Multhaup G., Craessaerts K., Annaert W. and De Strooper B. (2001) Processing of β-secretase by furin and other members of the proprotein convertase family. J. Biol. Chem. 276, 42114217.
  • Crystal A. S., Morais V. A., Pierson T. C., Pijak D. S., Carlin D., Lee V. M. and Doms R. W. (2003) Membrane topology of γ-secretase component PEN-2. J. Biol. Chem. 278, 2011720123.
  • De Pietri Tonelli D., Mihailovich M., Di Cesare A., Codazzi F., Grohovaz F. and Zacchetti D. (2004) Translational regulation of BACE-1 expression in neuronal and non-neuronal cells. Nucleic Acids Res. 32, 18081817.
  • Delarasse C., Auger R., Gonnord P., Fontaine B. and Kanellopoulos J. M. (2011) The purinergic receptor P2X7 triggers α-secretase dependent processing of the amyloid precursor protein. J. Biol. Chem. 286, 25962606.
  • Dries D. R. and Yu G. (2008) Assembly, maturation, and trafficking of the γ-secretase complex in Alzheimer’s disease. Curr. Alzheimer Res. 5, 132146.
  • Dries D. R., Shah S., Han Y. H., Yu C., Yu S., Shearman M. S. and Yu G. (2009) Glu-333 of nicastrin directly participates in γ-secretase activity. J. Biol. Chem. 284, 2971429724.
  • Dulin F., Leveille F., Ortega J. B., Mornon J. P., Buisson A., Callebaut I. and Colloc’h N. (2008) P3 peptide, a truncated form of Aβ devoid of synaptotoxic effect, does not assemble into soluble oligomers. FEBS Lett. 582, 18651870.
  • Edbauer D., Winkler E., Haass C. and Steiner H. (2002) Presenilin and nicastrin regulate each other and determine amyloid β-peptide production via complex formation. Proc. Natl Acad. Sci. USA 99, 86668671.
  • Edbauer D., Winkler E., Regula J. T., Pesold B., Steiner H. and Haass C. (2003) Reconstitution of γ-secretase activity. Nat. Cell Biol. 5, 486488.
  • Edwards D. R., Handsley M. M. and Pennington C. J. (2008) The ADAM metalloproteinases. Mol. Aspects Med. 29, 258289.
  • Esch F. S., Keim P. S., Beattie E. C., Blacher R. W., Culwell A. R., Oltersdorf T., McClure D. and Ward P. J. (1990) Cleavage of amyloid β peptide during constitutive processing of its precursor. Science 248, 11221124.
  • Esler W. P., Kimberly W. T., Ostaszewski B. L., Diehl T. S., Moore C. L., Tsai J.-Y., Rahmati T., Xia W., Selkoe D. J. and Wolfe M. S. (2000) Transition-state analogue inhibitors of γ-secretase bind directly to presenilin-1. Nat. Cell Biol. 2, 428433.
  • Esler W. P., Kimberly W. T., Ostaszewski B. L., Ye W., Diehl T. S., Selkoe D. J. and Wolfe M. S. (2002) Activity-dependent isolation of the presenilin-γ-secretase complex reveals nicastrin and a γ substrate. Proc. Natl Acad. Sci. USA 99, 27202725.
  • Faca V. M., Ventura A. P., Fitzgibbon M. P. et al. (2008) Proteomic analysis of ovarian cancer cells reveals dynamic processes of protein secretion and shedding of extra-cellular domains. PLoS ONE 3, e2425.
  • Faghihi M. A., Modarresi F., Khalil A. M., Wood D. E., Sahagan B. G., Morgan T. E., Finch C. E., St Laurent G. 3rd, Kenny P. J. and Wahlestedt C. (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase. Nat. Med. 14, 723730.
  • Farmery M. R., Tjernberg L. O., Pursglove S. E., Bergman A., Winblad B. and Naslund J. (2003) Partial purification and characterization of γ-secretase from post mortem human brain. J. Biol. Chem. 278, 2427724284.
  • Fassler M., Zocher M., Klare S. et al. (2010) Masking of transmembrane-based retention signals controls ER export of γ-secretase. Traffic 11, 250258.
  • Ferrando A. A. (2009) The role of NOTCH1 signaling in T-ALL. Hematology Am. Soc. Hematol. Educ. Program 2009, 353361.
  • Fluhrer R., Grammer G., Israel L. et al. (2006) A γ-secretase-like intramembrane cleavage of TNFα by the GxGD aspartyl protease SPPL2b. Nat. Cell Biol. 8, 894896.
  • Fluhrer R., Fukumori A., Martin L. et al. (2008) Intramembrane proteolysis of GXGD-type aspartyl proteases is slowed by a familial Alzheimer disease-like mutation. J. Biol. Chem. 283, 3012130128.
  • Fluhrer R., Steiner H. and Haass C. (2009) Intramembrane proteolysis by signal peptide peptidases – a comparative discussion of GxGD-type aspartyl proteases. J. Biol. Chem. 284, 1397513979.
  • Fortini M. E. and Bilder D. (2009) Endocytic regulation of Notch signaling. Curr. Opin. Genet. Dev. 19, 323328.
  • Fortna R. R., Crystal A. S., Morais V. A., Pijak D. S., Lee V. M. and Doms R. W. (2004) Membrane topology and nicastrin-enhanced endoproteolysis of APH-1, a component of the γ-secretase complex. J. Biol. Chem. 279, 36853693.
  • Fraering P. C., LaVoie M. J., Ye W., Ostaszewski B. L., Kimberly W. T., Selkoe D. J. and Wolfe M. S. (2004) Detergent-dependent dissociation of active γ-secretase reveals an interaction between Pen-2 and PS1-NTF and offers a model for subunit organization within the complex. Biochemistry 43, 323333.
  • Francis R., McGrath G., Zhang J. et al. (2002) aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation. Dev. Cell 3, 8597.
  • Freeman M. (2009) Rhomboids: 7 years of a new protease family. Semin. Cell Dev. Biol. 20, 231239.
  • Friedmann E., Hauben E., Maylandt K., Schleeger S., Vreugde S., Lichtenthaler S. F., Kuhn P. H., Stauffer D., Rovelli G. and Martoglio B. (2006) SPPL2a and SPPL2b promote intramembrane proteolysis of TNFα in activated dendritic cells to trigger IL-12 production. Nat. Cell Biol. 8, 843848.
  • Fukumori A., Fluhrer R., Steiner H. and Haass C. (2010) Three-amino acid spacing of presenilin endoproteolysis suggests a general stepwise cleavage of γ-secretase-mediated intramembrane proteolysis. J. Neurosci. 30, 78537862.
  • Furukawa K., Sopher B. L., Rydel R. E., Begley J. G., Pham D. G., Martin G. M., Fox M. and Mattson M. P. (1996) Increased activity-regulating and neuroprotective efficacy of α-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J. Neurochem. 67, 18821896.
  • Georgakopoulos A., Litterst C., Ghersi E., Baki L., Xu C., Serban G. and Robakis N. K. (2006) Metalloproteinase/Presenilin1 processing of ephrinB regulates EphB-induced Src phosphorylation and signaling. EMBO J. 25, 12421252.
  • Golde T. E., Wolfe M. S. and Greenbaum D. C. (2009) Signal peptide peptidases: a family of intramembrane-cleaving proteases that cleave type 2 transmembrane proteins. Semin. Cell Dev. Biol. 20, 225230.
  • Gruninger-Leitch F., Schlatter D., Kung E., Nelbock P. and Dobeli H. (2002) Substrate and inhibitor profile of BACE (β-secretase) and comparison with other mammalian aspartic proteases. J. Biol. Chem. 277, 46874693.
  • Gu Y., Misonou H., Sato T., Dohmae N., Takio K. and Ihara Y. (2001) Distinct intramembrane cleavage of the β-amyloid precursor protein family resembling γ-secretase-like cleavage of Notch. J. Biol. Chem. 276, 3523535238.
  • Haass C. (2004) Take five-BACE and the γ-secretase quartet conduct Alzheimer’s amyloid β-peptide generation. EMBO J. 23, 483488.
  • Haass C. and Selkoe D. J. (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101112.
  • Haass C. and Steiner H. (2002) Alzheimer disease γ-secretase: a complex story of GxGD-type presenilin proteases. Trends Cell Biol. 12, 556562.
  • Hardy J. and Selkoe D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353356.
  • Hartmann D., de Strooper B., Serneels L. et al. (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for α-secretase activity in fibroblasts. Hum. Mol. Genet. 11, 26152624.
  • Hayashida K., Bartlett A. H., Chen Y. and Park P. W. (2010) Molecular and cellular mechanisms of ectodomain shedding. Anat. Rec. (Hoboken) 293, 925937.
  • He G., Luo W., Li P. et al. (2010) γ-Secretase activating protein is a therapeutic target for Alzheimer’s disease. Nature 467, 9598.
  • Hebert S. S., Serneels L., Dejaegere T., Horre K., Dabrowski M., Baert V., Annaert W., Hartmann D. and De Strooper B. (2004) Coordinated and widespread expression of γ-secretase in vivo: evidence for size and molecular heterogeneity. Neurobiol. Dis. 17, 260272.
  • Hebert S. S., Serneels L., Tolia A., Craessaerts K., Derks C., Filippov M. A., Muller U. and De Strooper B. (2006) Regulated intramembrane proteolysis of amyloid precursor protein and regulation of expression of putative target genes. EMBO Rep. 7, 739745.
  • Hebert S. S., Horre K., Nicolai L., Papadopoulou A. S., Mandemakers W., Silahtaroglu A. N., Kauppinen S., Delacourte A. and De Strooper B. (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc. Natl Acad. Sci. USA 105, 64156420.
  • Heilig E. A., Xia W., Shen J. and Kelleher R. J. 3rd (2010) A presenilin-1 mutation identified in familial Alzheimer disease with cotton wool plaques causes a nearly complete loss of γ-secretase activity. J. Biol. Chem. 285, 2235022359.
  • Hemming M. L., Elias J. E., Gygi S. P. and Selkoe D. J. (2008) Proteomic profiling of γ-secretase substrates and mapping of substrate requirements. PLoS Biol. 6, e257.
  • Henricson A., Kall L. and Sonnhammer E. L. (2005) A novel transmembrane topology of presenilin based on reconciling experimental and computational evidence. FEBS J. 272, 27272733.
  • Hitt B. D., Jaramillo T. C., Chetkovich D. M. and Vassar R. (2010) BACE1-/- mice exhibit seizure activity that does not correlate with sodium channel level or axonal localization. Mol. Neurodegener. 5, 31.
  • Hong L., Koelsch G., Lin X., Wu S., Terzyan S., Ghosh A. K., Zhang X. C. and Tang J. (2000) Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science (New York, N.Y.) 290, 150153.
  • Horiuchi K., Kimura T., Miyamoto T., Takaishi H., Okada Y., Toyama Y. and Blobel C. P. (2007) Cutting edge: TNF-α-converting enzyme (TACE/ADAM17) inactivation in mouse myeloid cells prevents lethality from endotoxin shock. J. Immunol. 179, 26862689.
  • Hu X., Hicks C. W., He W., Wong P., Macklin W. B., Trapp B. D. and Yan R. (2006) Bace1 modulates myelination in the central and peripheral nervous system. Nat. Neurosci. 9, 15201525.
  • Hu X., Zhou X., He W., Yang J., Xiong W., Wong P., Wilson C. G. and Yan R. (2010) BACE1 deficiency causes altered neuronal activity and neurodegeneration. J. Neurosci. 30, 88198829.
  • Huse J. T., Pijak D. S., Leslie G. J., Lee V. M. and Doms R. W. (2000) Maturation and endosomal targeting of β-site amyloid precursor protein-cleaving enzyme. The Alzheimer’s disease β-secretase. J. Biol. Chem. 275, 3372933737.
  • Huse J. T., Liu K., Pijak D. S., Carlin D., Lee V. M. and Doms R. W. (2002) β-Secretase processing in the trans-Golgi network preferentially generates truncated amyloid species that accumulate in Alzheimer’s disease brain. J. Biol. Chem. 14, 14.
  • Hussain I., Powell D., Howlett D. R. et al. (1999) Identification of a novel aspartic protease (Asp 2) as β-secretase. Mol. Cell. Neurosci. 14, 419427.
  • Inoue E., Deguchi-Tawarada M., Togawa A., Matsui C., Arita K., Katahira-Tayama S., Sato T., Yamauchi E., Oda Y. and Takai Y. (2009) Synaptic activity prompts γ-secretase-mediated cleavage of EphA4 and dendritic spine formation. J. Cell Biol. 185, 551564.
  • Jacobsen H., Reinhardt D., Brockhaus M., Bur D., Kocyba C., Kurt H., Grim M. G., Baumeister R. and Loetscher H. (1999) The influence of endoproteolytic processing of familial Alzheimer’s disease presenilin 2 on Aβ42 amyloid peptide formation. J. Biol. Chem. 274, 3523335239.
  • Janes P. W., Saha N., Barton W. A., Kolev M. V., Wimmer-Kleikamp S. H., Nievergall E., Blobel C. P., Himanen J. P., Lackmann M. and Nikolov D. B. (2005) Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123, 291304.
  • Jorissen E., Prox J., Bernreuther C. et al. (2010) The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J. Neurosci. 30, 48334844.
  • Kaether C., Lammich S., Edbauer D., Ertl M., Rietdorf J., Capell A., Steiner H. and Haass C. (2002) A presenilin-1/nicastrin complex is targeted to the plasma membrane and affects trafficking and processing of the β-amyloid precursor protein. J. Cell Biol. 158, 551561.
  • Kaether C., Scheuermann J., Fassler M., Zilow S., Shirotani K., Valkova C., Novak B., Kacmar S., Steiner H. and Haass C. (2007) Endoplasmic reticulum retention of the γ-secretase complex component Pen2 by Rer1. EMBO Rep. 8, 743748.
  • Kim S. H. and Sisodia S. S. (2005) Evidence that the “NF” motif in transmembrane domain 4 of presenilin 1 is critical for binding with PEN-2. J. Biol. Chem. 280, 4195341966.
  • Kim S. H., Yin Y. I., Li Y. M. and Sisodia S. S. (2004) Evidence that assembly of an active γ-secretase complex occurs in the early compartments of the secretory pathway. J. Biol. Chem. 279, 4861548619.
  • Kimberly W. T., Xia W., Rahmati T., Wolfe M. S. and Selkoe D. J. (2000) The transmembrane aspartates in presenilin 1 and 2 are obligatory for γ-secretase activity and amyloid β-protein generation. J. Biol. Chem. 275, 31733178.
  • Kimberly W. T., LaVoie M. J., Ostaszewski B. L., Ye W., Wolfe M. S. and Selkoe D. J. (2003) γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc. Natl Acad. Sci. USA 100, 63826387.
  • Kitazume S., Tachida Y., Oka R., Kotani N., Ogawa K., Suzuki M., Dohmae N., Takio K., Saido T. C. and Hashimoto Y. (2002) Characterization of α 2,6-sialyltransferase cleavage by Alzheimer’s β-secretase(BACE1). J. Biol. Chem. 278, 1486514871.
  • Knappenberger K. S., Tian G., Ye X., Sobotka-Briner C., Ghanekar S. V., Greenberg B. D. and Scott C. W. (2004) Mechanism of γ-secretase cleavage activation: is γ-secretase regulated through autoinhibition involving the presenilin-1 exon 9 loop? Biochemistry 43, 62086218.
  • Kojro E., Postina R., Buro C., Meiringer C., Gehrig-Burger K. and Fahrenholz F. (2006) The neuropeptide PACAP promotes the α-secretase pathway for processing the Alzheimer amyloid precursor protein. FASEB J. 20, 512514.
  • Kopan R. and Ilagan M. X. (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216233.
  • Kornilova A. Y., Bihel F., Das C. and Wolfe M. S. (2005) The initial substrate-binding site of γ-secretase is located on presenilin near the active site. Proc. Natl Acad. Sci. USA 102, 32303235.
  • Kuhn P. H., Marjaux E., Imhof A., De Strooper B., Haass C. and Lichtenthaler S. F. (2007) Regulated intramembrane proteolysis of the interleukin-1 receptor II by α-, β-, and γ-secretase. J. Biol. Chem. 282, 1198211995.
  • Kuhn P. H., Wang H., Dislich B., Colombo A., Zeitschel U., Ellwart J. W., Kremmer E., Rossner S. and Lichtenthaler S. F. (2010) ADAM10 is the physiologically relevant, constitutive α-secretase of the amyloid precursor protein in primary neurons. EMBO J. 29, 30203032.
  • Kuperstein I., Broersen K., Benilova I. et al. (2010) Neurotoxicity of Alzheimer’s disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. EMBO J. 29, 34083420.
  • Lammich S., Kojro E., Postina R., Gilbert S., Pfeiffer R., Jasionowski M., Haass C. and Fahrenholz F. (1999) Constitutive and regulated α-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. 96, 39223927.
  • Lammich S., Okochi M., Takeda M., Kaether C., Capell A., Zimmer A. K., Edbauer D., Walter J., Steiner H. and Haass C. (2002) Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Aβ-like peptide. J. Biol. Chem. 277, 4475444759.
  • Lammich S., Schobel S., Zimmer A. K., Lichtenthaler S. F. and Haass C. (2004) Expression of the Alzheimer protease BACE1 is suppressed via its 5’-untranslated region. EMBO Rep. 5, 620625.
  • LaPointe C. F. and Taylor R. K. (2000) The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases. J. Biol. Chem. 275, 15021510.
  • Laudon H., Hansson E. M., Melen K., Bergman A., Farmery M. R., Winblad B., Lendahl U., von Heijne G. and Naslund J. (2005) A nine-transmembrane domain topology for presenilin 1. J. Biol. Chem. 280, 3535235360.
  • Lazarov V. K., Fraering P. C., Ye W., Wolfe M. S., Selkoe D. J. and Li H. (2006) Electron microscopic structure of purified, active γ-secretase reveals an aqueous intramembrane chamber and two pores. Proc. Natl Acad. Sci. USA 103, 68896894.
  • Le Gall S. M., Maretzky T., Issuree P. D., Niu X. D., Reiss K., Saftig P., Khokha R., Lundell D. and Blobel C. P. (2010) ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site. J. Cell Sci. 123, 39133922.
  • Lee S. F., Shah S., Li H., Yu C., Han W. and Yu G. (2002) Mammalian APH-1 interacts with presenilin and nicastrin and Is required for intramembrane proteolysis of amyloid-β precursor protein and Notch. J. Biol. Chem. 277, 4501345019.
  • Lemberg M. K. and Freeman M. (2007) Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res. 17, 16341646.
  • Levitan D., Doyle T. G., Brousseau D., Lee M. K., Thinakaran G., Slunt H. H., Sisodia S. S. and Greenwald I. (1996) Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 93, 1494014944.
  • Li Q. and Sudhof T. C. (2004) Cleavage of amyloid-β precursor protein and amyloid-β precursor-like protein by BACE 1. J. Biol. Chem. 279, 1054210550.
  • Li Y. M., Lai M. T., Xu M., Huang Q., DiMuzio-Mower J., Sardana M. K., Shi X. P., Yin K. C., Shafer J. A. and Gardell S. J. (2000a) Presenilin 1 is linked with γ-secretase activity in the detergent solubilized state. Proc. Natl Acad. Sci. USA 97, 61386143.
  • Li Y. M., Xu M., Lai M. T. et al. (2000b) Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, 689694.
  • Li T., Ma G., Cai H., Price D. L. and Wong P. C. (2003) Nicastrin is required for assembly of presenilin/γ-secretase complexes to mediate Notch signaling and for processing and trafficking of β-amyloid precursor protein in mammals. J. Neurosci. 23, 32723277.
  • Lichtenthaler S. F. (2011) α-Secretase in Alzheimer’s disease: molecular identity, regulation and therapeutic potential. J. Neurochem. 116, 1021.
  • Lichtenthaler S. F. and Steiner H. (2007) Sheddases and intramembrane-cleaving proteases: RIPpers of the membrane. Symposium on regulated intramembrane proteolysis. EMBO Rep. 8, 537541.
  • Lichtenthaler S. F., Dominguez D. I., Westmeyer G. G., Reiss K., Haass C., Saftig P., De Strooper B. and Seed B. (2003) The cell adhesion protein P-selectin glycoprotein ligand-1 is a substrate for the aspartyl protease BACE1. J. Biol. Chem. 278, 4871348719.
  • Lin X., Koelsch G., Wu S., Downs D., Dashti A. and Tang J. (2000) Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proc. Natl Acad. Sci. USA 97, 14561460.
  • Ludwig A., Hundhausen C., Lambert M. H., Broadway N., Andrews R. C., Bickett D. M., Leesnitzer M. A. and Becherer J. D. (2005) Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules. Comb. Chem. High Throughput Screen 8, 161171.
  • Martin L., Fluhrer R. and Haass C. (2009) Substrate requirements for SPPL2b-dependent regulated intramembrane proteolysis. J. Biol. Chem. 284, 56625670.
  • McCarthy J. V., Twomey C. and Wujek P. (2009) Presenilin-dependent regulated intramembrane proteolysis and γ-secretase activity. Cell. Mol. Life Sci. 66, 15341555.
  • Meziane H., Dodart J. C., Mathis C., Little S., Clemens J., Paul S. M. and Ungerer A. (1998) Memory-enhancing effects of secreted forms of the β-amyloid precursor protein in normal and amnestic mice. Proc. Natl Acad. Sci. USA 95, 1268312688.
  • Mitterreiter S., Page R. M., Kamp F. et al. (2010) Bepridil and amiodarone simultaneously target the Alzheimer’s disease β- and γ-secretase via distinct mechanisms. J. Neurosci. 30, 89748983.
  • Moehlmann T., Winkler E., Xia X. et al. (2002) Presenilin-1 mutations of leucine 166 equally affect the generation of the Notch and APP intracellular domains independent of their effect on Aβ42 production. Proc. Natl Acad. Sci. USA 99, 80258030.
  • Morais V. A., Crystal A. S., Pijak D. S., Carlin D., Costa J., Lee V. M. and Doms R. W. (2003) The transmembrane domain region of nicastrin mediates direct interactions with APH-1 and the γ-secretase complex. J. Biol. Chem. 278, 4328443291.
  • Munter L. M., Voigt P., Harmeier A., Kaden D., Gottschalk K. E., Weise C., Pipkorn R., Schaefer M., Langosch D. and Multhaup G. (2007) GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Aβ42. EMBO J. 26, 17021712.
  • Munter L. M., Botev A., Richter L., Hildebrand P. W., Althoff V., Weise C., Kaden D. and Multhaup G. (2010) Aberrant amyloid precursor protein (APP) processing in hereditary forms of Alzheimer disease caused by APP familial Alzheimer disease mutations can be rescued by mutations in the APP GxxxG motif. J. Biol. Chem. 285, 2163621643.
  • Nagano O. and Saya H. (2004) Mechanism and biological significance of CD44 cleavage. Cancer Sci. 95, 930935.
  • Nikolaev A., McLaughlin T., O’Leary D. D. and Tessier-Lavigne M. (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457, 981989.
  • Nyabi O., Bentahir M., Horre K., Herreman A., Gottardi-Littell N., Van Broeckhoven C., Merchiers P., Spittaels K., Annaert W. and De Strooper B. (2003) Presenilins mutated at Asp257 or Asp385 restore Pen-2 expression and Nicastrin glycosylation but remain catalytically inactive in the absence of wild type Presenilin. J. Biol. Chem. 278, 4343043436.
  • O’Connor T., Sadleir K. R., Maus E. et al. (2008) Phosphorylation of the translation initiation factor eIF2α increases BACE1 levels and promotes amyloidogenesis. Neuron 60, 9881009.
  • Oh Y. S. and Turner R. J. (2005a) Topology of the C-terminal fragment of human presenilin 1. Biochemistry 44, 1182111828.
  • Oh Y. S. and Turner R. J. (2005b) Evidence that the COOH terminus of human presenilin 1 is located in extracytoplasmic space. Am. J. Physiol. Cell Physiol. 289, C576C581.
  • Okochi M., Steiner H., Fukumori A., Tanii H., Tomita T., Tanaka T., Iwatsubo T., Kudo T., Takeda M. and Haass C. (2002) Presenilins mediate a dual intramembraneous γ-secretase cleavage of Notch-1. EMBO J. 21, 54085416.
  • Osenkowski P., Li H., Ye W., Li D., Aeschbach L., Fraering P. C., Wolfe M. S. and Selkoe D. J. (2009) Cryoelectron microscopy structure of purified γ-secretase at 12 Å resolution. J. Mol. Biol. 385, 642652.
  • Parkin E. and Harris B. (2009) A disintegrin and metalloproteinase (ADAM)-mediated ectodomain shedding of ADAM10. J. Neurochem. 108, 14641479.
  • Perez-Revuelta B. I., Fukumori A., Lammich S., Yamasaki A., Haass C. and Steiner H. (2010) Requirement for small side chain residues within the GxGD-motif of presenilin for γ-secretase substrate cleavage. J. Neurochem. 112, 940950.
  • Peschon J. J., Slack J. L., Reddy P. et al. (1998) An essential role for ectodomain shedding in mammalian development. Science 282, 12811284.
  • Podlisny M. B., Citron M., Amarante P. et al. (1997) Presenilin proteins undergo heterogeneous endoproteolysis between Thr291 and Ala299 and occur as stable N- and C-terminal fragments in normal and Alzheimer brain tissue. Neurobiol. Dis. 3, 325337.
  • Postina R., Schroeder A., Dewachter I. et al. (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J. Clin. Invest. 113, 14561464.
  • Qi-Takahara Y., Morishima-Kawashima M., Tanimura Y. et al. (2005) Longer forms of amyloid β protein: implications for the mechanism of intramembrane cleavage by γ-secretase. J. Neurosci. 25, 436445.
  • Rajendran L., Schneider A., Schlechtingen G. et al. (2008) Efficient inhibition of the Alzheimer’s disease β-secretase by membrane targeting. Science 320, 520523.
  • Reiss K. and Saftig P. (2009) The “A Disintegrin And Metalloprotease” (ADAM) family of sheddases: physiological and cellular functions. Semin. Cell Dev. Biol. 20, 126137.
  • Ren Z., Schenk D., Basi G. S. and Shapiro I. P. (2007) Amyloid β-protein precursor juxtamembrane domain regulates specificity of γ-secretase-dependent cleavages. J. Biol. Chem. 282, 3535035360.
  • Ring S., Weyer S. W., Kilian S. B. et al. (2007) The secreted β-amyloid precursor protein ectodomain APPsα is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J. Neurosci. 27, 78177826.
  • Rogers G. W. Jr, Edelman G. M. and Mauro V. P. (2004) Differential utilization of upstream AUGs in the β-secretase mRNA suggests that a shunting mechanism regulates translation. Proc. Natl Acad. Sci. USA 101, 27942799.
  • Rossner S., Sastre M., Bourne K. and Lichtenthaler S. F. (2006) Transcriptional and translational regulation of BACE1 expression–implications for Alzheimer’s disease. Prog. Neurobiol. 79, 95111.
  • Sannerud R. and Annaert W. (2009) Trafficking, a key player in regulated intramembrane proteolysis. Semin. Cell Dev. Biol. 20, 183190.
  • Sastre M., Steiner H., Fuchs K., Capell A., Multhaup G., Condron M. M., Teplow D. B. and Haass C. (2001) Presenilin-dependent γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. 2, 835841.
  • Sato C., Morohashi Y., Tomita T. and Iwatsubo T. (2006) Structure of the catalytic pore of γ-secretase probed by the accessibility of substituted cysteines. J. Neurosci. 26, 1208112088.
  • Sato T., Diehl T. S., Narayanan S., Funamoto S., Ihara Y., De Strooper B., Steiner H., Haass C. and Wolfe M. S. (2007) Active γ-secretase complexes contain only one of each component. J. Biol. Chem. 282, 3398533993.
  • Sato C., Takagi S., Tomita T. and Iwatsubo T. (2008a) The C-terminal PAL motif and transmembrane domain 9 of presenilin 1 are involved in the formation of the catalytic pore of the γ-secretase. J. Neurosci. 28, 62646271.
  • Sato T., Ananda K., Cheng C. I., Suh E. J., Narayanan S. and Wolfe M. S. (2008b) Distinct pharmacological effects of inhibitors of signal peptide peptidase and γ-secretase. J. Biol. Chem. 283, 3328733295.
  • Saunders A. J., Kim T. W. and Tanzi R. E. (1999) BACE maps to chromosome 11 and a BACE homolog, BACE2, reside in the obligate down syndrome region of chromosome 21. Science 286, 1255a.
  • Savonenko A. V., Melnikova T., Laird F. M., Stewart K. A., Price D. L. and Wong P. C. (2008) Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1-null mice. Proc. Natl Acad. Sci. USA 105, 55855590.
  • Scheuner D., Eckman C., Jensen M. et al. (1996) Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med. 2, 864870.
  • Schmechel A., Strauss M., Schlicksupp A., Pipkorn R., Haass C., Bayer T. A. and Multhaup G. (2004) Human BACE forms dimers and colocalizes with APP. J. Biol. Chem. 279, 3971039717.
  • Schroeter E. H., Ilagan M. X., Brunkan A. L. et al. (2003) A presenilin dimer at the core of the γ-secretase enzyme: insights from parallel analysis of Notch 1 and APP proteolysis. Proc. Natl Acad. Sci. USA 100, 1307513080.
  • Seeger M., Nordstedt C., Petanceska S. et al. (1997) Evidence for phosphorylation and oligomeric assembly of presenilin 1. Proc. Natl Acad. Sci. USA 94, 50905094.
  • Seiffert D., Bradley J. D., Rominger C. M. et al. (2000) Presenilin-1 and -2 are molecular targets for γ-secretase inhibitors. J. Biol. Chem. 275, 3408634091.
  • Selkoe D. and Kopan R. (2003) Notch and presenilin: regulated intramembrane proteolysis links development and degeneration. Annu. Rev. Neurosci. 26, 565597.
  • Serneels L., Van Biervliet J., Craessaerts K. et al. (2009) γ-Secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer’s disease. Science 324, 639642.
  • Shah S., Lee S. F., Tabuchi K., Hao Y. H., Yu C., Laplant Q., Ball H., Dann C. E. 3rd, Sudhof T. and Yu G. (2005) Nicastrin functions as a γ-secretase-substrate receptor. Cell 122, 435447.
  • Shen J. and Kelleher R. J. 3rd (2007) The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc. Natl Acad. Sci. USA 104, 403409.
  • Shimojo M., Sahara N., Mizoroki T., Funamoto S., Morishima-Kawashima M., Kudo T., Takeda M., Ihara Y., Ichinose H. and Takashima A. (2008) Enzymatic characteristics of I213T mutant presenilin-1/γ-secretase in cell models and knock-in mouse brains: familial Alzheimer disease-linked mutation impairs γ-site cleavage of amyloid precursor protein C-terminal fragment β. J. Biol. Chem. 283, 1648816496.
  • Shirotani K., Takahashi K., Ozawa K., Kunishita T. and Tabira T. (1997) Determination of a cleavage site of presenilin 2 protein in stably transfected SH-SY5Y human neuroblastoma cell lines. Biochem. Biophys. Res. Commun. 240, 728731.
  • Shirotani K., Takahashi K., Araki W., Maruyama K. and Tabira T. (2000) Mutational analysis of intrinsic regions of presenilin 2 that determine its endoproteolytic cleavage and pathological function. J. Biol. Chem. 275, 36813686.
  • Shirotani K., Edbauer D., Prokop S., Haass C. and Steiner H. (2004a) Identification of distinct γ-secretase complexes with different APH-1 variants. J. Biol. Chem. 279, 4134041345.
  • Shirotani K., Edbauer D., Kostka M., Steiner H. and Haass C. (2004b) Immature nicastrin stabilizes APH-1 independent of PEN-2 and presenilin – identification of nicastrin mutants which selectively interact with APH-1. J. Neurochem. 89, 15201527.
  • Shirotani K., Tomioka M., Kremmer E., Haass C. and Steiner H. (2007) Pathological activity of familial Alzheimer’s disease-associated mutant presenilin can be executed by six different γ-secretase complexes. Neurobiol. Dis. 27, 102107.
  • Sinha S., Anderson J. P., Barbour R. et al. (1999) Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 402, 537540.
  • Sisodia S. S. (1992) β-Amyloid precursor protein cleavage by a membrane-bound protease. Proc. Natl Acad. Sci. USA 89, 60756079.
  • Skovronsky D. M., Moore D. B., Milla M. E., Doms R. W. and Lee V. M. (2000) Protein kinase C-dependent α-secretase competes with β-secretase for cleavage of amyloid-β precursor protein in the trans-golgi network. J. Biol. Chem. 275, 25682575.
  • Sobhanifar S., Schneider B., Lohr F. et al. (2010) Structural investigation of the C-terminal catalytic fragment of presenilin 1. Proc. Natl Acad. Sci. USA 107, 96449649.
  • Solans A., Estivill X. and de La Luna S. (2000) A new aspartyl protease on 21q22.3, BACE2, is highly similar to Alzheimer’s amyloid precursor protein β-secretase. Cytogenet. Cell Genet. 89, 177184.
  • Song W., Nadeau P., Yuan M., Yang X., Shen J. and Yankner B. A. (1999) Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc. Natl Acad. Sci. USA 96, 69596963.
  • Spasic D. and Annaert W. (2008) Building γ-secretase: the bits and pieces. J. Cell Sci. 121, 413420.
  • Spasic D., Tolia A., Dillen K., Baert V., De Strooper B., Vrijens S. and Annaert W. (2006) Presenilin-1 maintains a nine-transmembrane topology throughout the secretory pathway. J. Biol. Chem. 281, 2656926577.
  • Spasic D., Raemaekers T., Dillen K., Declerck I., Baert V., Serneels L., Fullekrug J. and Annaert W. (2007) Rer1p competes with APH-1 for binding to nicastrin and regulates γ-secretase complex assembly in the early secretory pathway. J. Cell Biol. 176, 629640.
  • Steiner D. F. (1998) The proprotein convertases. Curr. Opin. Chem. Biol. 2, 3139.
  • Steiner H., Romig H., Pesold B., Philipp U., Baader M., Citron M., Loetscher H., Jacobsen H. and Haass C. (1999a) Amyloidogenic function of the Alzheimer’s disease-associated presenilin 1 in the absence of endoproteolysis. Biochemistry 38, 1460014605.
  • Steiner H., Duff K., Capell A. et al. (1999b) A loss of function mutation of presenilin-2 interferes with amyloid β-peptide production and Notch signaling. J. Biol. Chem. 274, 2866928673.
  • Steiner H., Kostka M., Romig H. et al. (2000) Glycine 384 is required for presenilin-1 function and is conserved in polytopic bacterial aspartyl proteases. Nat. Cell Biol. 2, 848851.
  • Steiner H., Winkler E., Edbauer D., Prokop S., Basset G., Yamasaki A., Kostka M. and Haass C. (2002) PEN-2 is an integral component of the γ-secretase complex required for coordinated expression of presenilin and nicastrin. J. Biol. Chem. 277, 3906239065.
  • Steiner H., Winkler E. and Haass C. (2008) Chemical cross-linking provides a model of the γ-secretase complex subunit architecture and evidence for close proximity of the C-terminal fragment of presenilin with APH-1. J. Biol. Chem. 283, 3467734686.
  • Struhl G. and Adachi A. (2000) Requirements for presenilin-dependent cleavage of Notch and other transmembrane proteins. Mol. Cell 6, 625636.
  • Takagi S., Tominaga A., Sato C., Tomita T. and Iwatsubo T. (2010) Participation of transmembrane domain 1 of presenilin 1 in the catalytic pore structure of the γ-secretase. J. Neurosci. 30, 1594315950.
  • Takami M., Nagashima Y., Sano Y., Ishihara S., Morishima-Kawashima M., Funamoto S. and Ihara Y. (2009) γ-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment. J. Neurosci. 29, 1304213052.
  • Takasugi N., Tomita T., Hayashi I., Tsuruoka M., Niimura M., Takahashi Y., Thinakaran G. and Iwatsubo T. (2003) The role of presenilin cofactors in the γ-secretase complex. Nature 422, 438441.
  • van Tetering G., van Diest P., Verlaan I., van der Wall E., Kopan R. and Vooijs M. (2009) Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. J. Biol. Chem. 284, 3101831027.
  • Thinakaran G., Borchelt D. R., Lee M. K. et al. (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17, 181190.
  • Thinakaran G., Regard J. B., Bouton C. M., Harris C. L., Price D. L., Borchelt D. R. and Sisodia S. S. (1998) Stable association of presenilin derivatives and absence of presenilin interactions with APP. Neurobiol. Dis. 4, 438453.
  • Tolia A., Chavez-Gutierrez L. and De Strooper B. (2006) Contribution of presenilin transmembrane domains 6 and 7 to a water-containing cavity in the γ-secretase complex. J. Biol. Chem. 281, 2763327642.
  • Tolia A., Horre K. and De Strooper B. (2008) Transmembrane domain 9 of presenilin determines the dynamic conformation of the catalytic site of γ-secretase. J. Biol. Chem. 283, 1979319803.
  • Tomita T. (2009) Secretase inhibitors and modulators for Alzheimer’s disease treatment. Expert Rev. Neurother. 9, 661679.
  • Tousseyn T., Thathiah A., Jorissen E. et al. (2009) ADAM10, the rate-limiting protease of regulated intramembrane proteolysis of Notch and other proteins, is processed by ADAMS-9, ADAMS-15, and the γ-secretase. J. Biol. Chem. 284, 1173811747.
  • Vassar R., Bennett B. D., Babu-Khan S. et al. (1999) β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735741.
  • Vassar R., Kovacs D. M., Yan R. and Wong P. C. (2009) The β-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. J. Neurosci. 29, 1278712794.
  • Wakabayashi T., Craessaerts K., Bammens L. et al. (2009) Analysis of the γ-secretase interactome and validation of its association with tetraspanin-enriched microdomains. Nat. Cell Biol. 11, 13401346.
  • Wang J., Beher D., Nyborg A. C., Shearman M. S., Golde T. E. and Goate A. (2006a) C-terminal PAL motif of presenilin and presenilin homologues required for normal active site conformation. J. Neurochem. 96, 218227.
  • Wang Y., Zhang Y. and Ha Y. (2006b) Crystal structure of a rhomboid family intramembrane protease. Nature 444, 179180.
  • Wang W. X., Rajeev B. W., Stromberg A. J., Ren N., Tang G., Huang Q., Rigoutsos I. and Nelson P. T. (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. J. Neurosci. 28, 12131223.
  • Watanabe N., Tomita T., Sato C., Kitamura T., Morohashi Y. and Iwatsubo T. (2005) Pen-2 is incorporated into the γ-secretase complex through binding to transmembrane domain 4 of presenilin 1. J. Biol. Chem. 280, 4196741975.
  • Weidemann A., Eggert S., Reinhard F. B., Vogel M., Paliga K., Baier G., Masters C. L., Beyreuther K. and Evin G. (2002) A novel ε-cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with Notch processing. Biochemistry 41, 28252835.
  • Weihofen A., Binns K., Lemberg M. K., Ashman K. and Martoglio B. (2002) Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296, 22152218.
  • Westmeyer G. G., Willem M., Lichtenthaler S. F., Lurman G., Multhaup G., Assfalg-Machleidt I., Reiss K., Saftig P. and Haass C. (2004) Dimerization of β-site β-amyloid precursor protein-cleaving enzyme. J. Biol. Chem. 279, 5320553212.
  • Willem M., Garratt A. N., Novak B., Citron M., Kaufmann S., Rittger A., DeStrooper B., Saftig P., Birchmeier C. and Haass C. (2006) Control of peripheral nerve myelination by the β-secretase BACE1. Science 314, 664666.
  • Willem M., Lammich S. and Haass C. (2009) Function, regulation and therapeutic properties of β-secretase (BACE1). Semin. Cell Dev. Biol. 20, 175182.
  • Willems S. H., Tape C. J., Stanley P. L., Taylor N. A., Mills I. G., Neal D. E., McCafferty J. and Murphy G. (2010) Thiol isomerases negatively regulate the cellular shedding activity of ADAM17. Biochem. J. 428, 439450.
  • Winkler E., Hobson S., Fukumori A., Dumpelfeld B., Luebbers T., Baumann K., Haass C., Hopf C. and Steiner H. (2009) Purification, pharmacological modulation, and biochemical characterization of interactors of endogenous human γ-secretase. Biochemistry 48, 11831197.
  • Wolfe M. S., Xia W., Ostaszewski B. L., Diehl T. S., Kimberly W. T. and Selkoe D. J. (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398, 513517.
  • Wong H. K., Sakurai T., Oyama F., Kaneko K., Wada K., Miyazaki H., Kurosawa M., De Strooper B., Saftig P. and Nukina N. (2005) β Subunits of voltage-gated sodium channels are novel substrates of β-site amyloid precursor protein-cleaving enzyme (BACE1) and γ-secretase. J. Biol. Chem. 280, 2300923017.
  • Wu Z., Yan N., Feng L., Oberstein A., Yan H., Baker R. P., Gu L., Jeffrey P. D., Urban S. and Shi Y. (2006) Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat. Struct. Mol. Biol. 13, 10841091.
  • Xu P. and Derynck R. (2010) Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. Mol. Cell 37, 551566.
  • Yamasaki A., Eimer S., Okochi M., Smialowska A., Kaether C., Baumeister R., Haass C. and Steiner H. (2006) The GxGD motif of presenilin contributes to catalytic function and substrate identification of γ-secretase. J. Neurosci. 26, 38213828.
  • Yan R., Bienkowski M. J., Shuck M. E. et al. (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature 402, 533537.
  • Yanagida K., Okochi M., Tagami S. et al. (2009) The 28-amino acid form of an APLP1-derived Aβ-like peptide is a surrogate marker for Aβ42 production in the central nervous system. EMBO Mol. Med. 1, 223235.
  • Yu G., Chen F., Levesque G. et al. (1998) The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains β-catenin. J. Biol. Chem. 273, 1647016475.
  • Yu G., Nishimura M., Arawaka S. et al. (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature 407, 4854.
  • Yu C., Kim S. H., Ikeuchi T., Xu H., Gasparini L., Wang R. and Sisodia S. S. (2001) Characterization of a presenilin-mediated APP carboxyl terminal fragment CTFγ: evidence for distinct mechanisms involved in γ-secretase processing of the APP and Notch1 transmembrane domains. J. Biol. Chem. 276, 4375643760.
  • Zhang J., Ye W., Wang R., Wolfe M. S., Greenberg B. D. and Selkoe D. J. (2002) Proteolysis of chimeric β-amyloid precursor proteins containing the Notch transmembrane domain yields amyloid β-like peptides. J. Biol. Chem. 277, 1506915075.
  • Zhao G., Mao G., Tan J., Dong Y., Cui M. Z., Kim S. H. and Xu X. (2004) Identification of a new presenilin-dependent ζ-cleavage site within the transmembrane domain of amyloid precursor protein. J. Biol. Chem. 279, 5064750650.
  • Zhao G., Cui M. Z., Mao G., Dong Y., Tan J., Sun L. and Xu X. (2005) γ-Cleavage is dependent on ζ-cleavage during the proteolytic processing of amyloid precursor protein within its transmembrane domain. J. Biol. Chem. 280, 3768937697.
  • Zhao G., Liu Z., Ilagan M. X. and Kopan R. (2010) γ-Secretase composed of PS1/Pen2/Aph1a can cleave notch and amyloid precursor protein in the absence of nicastrin. J. Neurosci. 30, 16481656.