SEARCH

SEARCH BY CITATION

References

  • Adibhatla R. M. and Hatcher J. F. (2006) Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic. Biol. Med. 40, 376387.
  • Aitken R. J., Wingate J. K., De Iuliis G. N., Koppers A. J. and McLaughlin E. A. (2006) Cis-unsaturated fatty acid stimulate reactive oxygen species generation and lipid peroxidation in human spermatozoa. J. Clin. Endocrinol. Metab. 91, 41514163.
  • Aon M. A., Cortassa S. and O′Rourke B. O. (2010) Redox-optimized ROS balance: a unifying hypothesis. Biochim. Biophys. Acta 1797, 865877.
  • Bazan N. (1970) Effect of ischemia and electro convulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218, 116.
  • Brand M. D. (2010) The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 45, 466472.
  • Brookes P. S., Wojtovich A. P., Burwell L. S., Hoffman D. L. and Nadtochly S. M. (2008) The interaction of mitochondrial membranes with reactive oxygen and nitrogen species. Curr. Top. Membr., 61, 211242.
  • Chan P. H., Chen S. F. and Yu A. C. H. (1988) Induction of intracellular superoxide radical formation by arachidonic acid and by polyunsaturated fatty acids in primary astrocytic cultures. J. Neurochem. 50, 11851193.
  • Chandel N. S. (2009) Mitochondrial regulation of oxygen sensing, in (YuanJ. X.-J. and WardJ. P. T., eds), Membrane Receptors, Channels and Transporters in Pulmonary Circulation, AEME, Vol. 661, pp. 339354. Humana Press, New York.
  • Cocco T., Di Paola M., Papa S. and Lorusso M. (1999) Arachidonic acid interaction with the mitochondrial electron transport chain promotes reactive oxygen species generation. Free Radic. Biol. Med. 27, 5159.
  • Conrad P. W., Conforti L., Kobayashi S., Beitner-Johnson D., Rust R. T., Yuan Y., Kim H. W., Kim R. H., Seta K. and Millhorn D. E. (2001) The molecular basis of O2-sensing and hypoxia tolerance in pheochromocytoma cells. Comp. Biochem. Physiol. Part B 128, 187204.
  • Corey S. J. and Rosoff P. M. (1991) Unsaturated fatty acids and lipoxygenase products regulate phagocytic NADPH oxidase activity by a nondetergent mechanism. J. Lab. Clin. Med. 118, 343351.
  • Cury-Boaventura M. F. and Curi R. (2005) Regulation of reactive oxygen species (ROS) production by C18 fatty acids in Jurkat and Raji cells. Clin. Sci. 108, 245253.
  • Duranteau J., Chandel N. S., Kulisz A., Shao Z. and Schumacker P. T. (1998) Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J. Biol. Chem. 273, 1161911624.
  • Feldkamp T., Kribben A., Roesner N. F., Seneter R. A. and Weinberg J. M. (2006) Accumulation of nonesterified fatty acids causes the sustained energetic deficit in kidney proximal tubules after hypoxia-reoxygenation. Am. J. Physiol. Renal. 290, F465477.
  • Gardiner M., Nilsson B., Rehncrona S. and Siesjö B. K. (1981) Free fatty acids in the rat brain in moderate and severe hypoxia. J. Neurochem. 36, 15001505.
  • Gong Y., Yi H., Fediuk J., Lizotte P. P. and Dakshinamurti S. (2010) Hypoxic neonatal pulmonary arterial myocytes are sensitized to ROS generated 8-isoprostane. Free Radic. Biol. Med. 48, 882894.
  • Greene L. A. (1978) Nerve growth factor prevents the death and stimulates neuronal differentiation of clonal PC12 pheochromocytoma cells in serum-free medium. J. Cell Biol. 78, 747755.
  • Greene L. A. and Tischler A. S. (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl Acad. Sci. USA 73, 24242428.
  • Guzy R. D., Hoyos B., Robin E., Chen H., Liu L., Mansfield K. D., Simon M. C., Hammerling U. and Schumacker P. T. (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 1, 401408.
  • Hansen H. S., Moesgaard B., Hansen H. H. and Petersen G. N. (2000) N-Acetylethanolamines and precursor phospholipids – relation to cell injury. Chem. Phys. Lipids 108, 135150.
  • Hansson M. J., Månsson R., Morota S. et al. (2008) Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radic. Biol. Med. 45, 284294.
  • Hart B. A., Simons J. M., Knaan-Shanzer S., Bakker N. P. and Labadie R. P. (1990) Antiarthritic activity of the newly developed neutrophil oxidative burst antagonist apocynin. Free Radic. Biol. Med. 9, 127131.
  • Hatanaka E., Levanda-Pires A. C., Pthon-Curi T. C. and Curi R. (2006) Systematic study on ROS production induced by oleic, linoleic, and γ-linolenic acids in human and rat neutrophils. Free Radic. Biol. Med. 41, 11241132.
  • Hatefi Y. and Rieske J. S. (1967) Preparation and properties of DPNH-coenzyme Q reductase (complex I of the respiratory chain), in Methods in Enzymology (EstabrookR. W. and PullmanM. E., eds), Vol. 10, pp. 235–239. Academic Press, New York.
  • Hoffman D. L. and Brookes P. S. (2009) Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions. J. Biol. Chem. 284, 1623616245.
  • Hoffman D. L., Salter J. D. and Brookes P. S. (2007) Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signalling. Am. J. Physiol. Circ. Physiol. 292, H101H108.
  • Höhler B., Lange B., Holzapfel B., Goldenberg A., Hänze J., Sell A., Testan H., Möller W. and Kummer W. (1999) Hypoxic upregulation of tyrosine hydroxylase gene expression is paralled, but not induced, by increased generation of reactive oxygen species in PC12 cells. FEBS Lett. 457, 5356.
  • Hütter J. F., Alves C. and Soboll S. (1990) Effects of hypoxia and fatty acids on the distribution of metabolits in rat heart. Biochim. Biophys. Acta 1016, 244252.
  • Kahlert S., Schönfeld P. and Reiser G. (2005) The Refsum disease marker phytanic acid, a branched chain fatty acid, affects Ca2 + homeostasis and mitochondria, and reduced cell viability in rat hippocampal astrocytes. Neurobiol. Dis. 18, 110118.
  • Koppers A. J., Garg M. L. and Aitken R. J. (2010) Stimulation of mitochondrial reactive oxygen species production by unesterified, unsaturated fatty acids in defective human spermatozoa, Free Radic. Biol. Med. 48, 112119.
  • Korge P., Ping P. and Weiss J. N. (2008) Reactive oxygen species production in energized cardiac mitochondria during hypoxie/reoxygenation. Modulation by nitric oxide. Circ. Res. 103, 873880.
  • Korshunov S. S., Korkina O. V., Ruuge E. K., Skulachev V. P. and Starkov A. A. (1998) Fatty acids as natural uncouplers preventing generation of O2−˙ and H2O2 by mitochondria in the resting state. FEBS Lett. 435, 215218.
  • Kwast E. K., Burke P. V., Staahl B. T. and Poyton R. O. (1999) Oxygen sensing in yeast. Evidence for the involvement of the respiratory chain in regulating the transcription of a subset of hypoxic genes. PNAS 96, 54465451.
  • Lambertucci R. H., Hirabara S. M., Siveira L. D. R., Levada-Pires A. C., Curi R. and Pithon-Curi T. C. (2008) Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells. J. Cell. Physiol. 216, 796804.
  • Lluis J. M., Morales A., Blasco C., Colell A., Mari M., Garcia-Ruiz C. and Fernandez-Checa F. C. (2005) Critical role of mitochondrial glutathione in the serviva of hepatocytes during hypoxia. J. Biol. Chem. 280, 32243232.
  • Loskovich M. V., Grivennikova V. G., Cecchini G. and Vinogradov A. D. (2005) Inhibitory effect of palmitate on the mitochondrial NADH:ubiquinone oxidoreductase (complex I) as related to the active-de-active enzyme transition. Biochem. J. 387, 677683.
  • Michiels C., Renard P., Bouaziz N., Heck N., Eliaers F., Ninane N., Quarck R., Holvoet P. and Raes M. (2002) Identification of the phospholipase A2 isoforms that contribute to arachidonic acid release in hypoxic endothelial cells: limits of phospholipase A2 inhibitors. Biochem. Pharmacol. 63, 321332.
  • Mueller S., Weber A., Fritz R., Mütze S., Rost D., Walczak H., Völkl A. and Stremmel W. (2002) Sensitive and real-time determination of H2O2 release from intact peroxisomes. Biochem. J. 363, 483491.
  • Murphy M. P. (2009) How mitochondria produce reactive oxygen species. Biochem. J. 4127, 113.
  • Qian L., Gao X., Pei Z., Wu X., Block M., Wilson B. and Flood P. M. (2007) NADPH oxidase inhibitor DPI is neuroprotective at femtomolar concentrations through inhibition of microglia over-activation. Parkinsonism Relat. Disord. 13(Suppl. 3), 1620.
  • Reynafarje B., Costa L. E. and Lehninger A. L. (1985) O2 solubility in aqueous media determined by a kinetic method. Anal. Biochem. 145, 406418.
  • Schönfeld P. and Reiser G. (2006) Rotenone-like action of the branched-chain phytanic acid induces oxidative stress in mitochondria. J. Biol. Chem. 281, 71367142.
  • Schönfeld P. and Wojtczak L. (2007) Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport. Biochim. Biophys. Acta 1767, 10321040.
  • Schönfeld P. and Wojtczak L. (2008) Fatty acids as modulators of the cellular production of reactive oxygen species, Free Radic. Biol. Med. 45, 231241.
  • Simmons D. L., Botting R. M. and HLA T. (2004) Cyclooxygenase isoenzymes: the biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 56, 387437.
  • Spicer Z. and Millhorn D. E. (2003) Oxygen sensing in neuroendocrine cells and other cell types: pheochromocytoma (PC12) cells as an experimental model. Endor. Pathol. 14, 277291.
  • Srinivasan S., Koenigstein A., Joseph J., Sun . L., Kalyanaraman B., Zaidi M. and Avadhanin N. G. (2010) Role of mitochondrial reactive oxygen species in osteoclast differentiation. Ann. NY Acad. Sci. 1192, 245252.
  • Stewart J. M., Blakely J. A. and Johnson M. D. (2000) The interaction of ferrocytochrome c with log-chain fatty acids and their CoA and carnitine esters. Biochem. Cell Biol. 78, 675681.
  • Sun D. and Gilboe D. D. (1994) Ischemia-induced changes in cerebral mitochondrial free fatty acids, phospholipids, and respiration in the rat. J. Neurochem. 62, 19211928.
  • Takeuchi Y., Morii H., Tamura M., Hayaishi O. and Watanabe Y. (1991) A possible mechanism of mitochondrial dysfunction during cerebral ischemia: inhibition of mitochondrial respiration activity by arachidonic acid. Arch. Biochem. Biophys. 289, 3338.
  • Tominaga H., Katoh H., Odagiri K., Takeuchi Y., Kawashima H., Saotome M., Urushida T., Satoh H. and Hayashi H. (2008) Different effects of palmitoyl-L-carnitine and palmitoyl-CoA on mitochondrial function in rat ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 295, H105H112.
  • Ueno K., Tanaka Y. and Ando S. (1988) Release of free fatty acids from rat cerebral synaptosomes under in vitro hypoxia. Neurosci. Lett. 84, 297301.
  • Van der Vusse G. J., Glatz J. F. C., Stam H. C. G. and Reneman R. S. (1992) Fatty acid homeostasis in the normoxic and ischemic heart. Physiol. Rev. 72, 881940.
  • Wasilewski M. and Wojtczak L. (2005) Effects of N-acylethanolamines on the respiratory chain and production of reactive oxygen species in heart mitochondria. FEBS Lett. 579, 47244728.
  • Wetzels J. F., Wang X., Gengaro P. E., Nemenoff R. A., Burke T. J. and Schrier R. W. (1993) Glycine protection against hypoxic but not phospholipase A2-induced injury in rat proximal tubules. Am. J. Physiol. 264, F94F99.
  • Wilson D. F., Rumsey W. L., Green T. J. and Vanderkooj J. M. (1988) The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J. Biol. Chem. 263, 27122718.