SEARCH

SEARCH BY CITATION

References

  • Abe Y., Namba H., Zheng Y. and Nawa H. (2009) In situ hybridization reveals developmental regulation of ErbB-4 mRNA expression in mouse midbrain: implication of ErbB receptors for dopaminergic neurons. Neuroscience 158, 17311741.
  • Alexi T. and Hefti F. (1993) Trophic actions of transforming growth factor alpha on mesencephalic dopaminergic neurons developing in culture. Neuroscience 55, 903918.
  • Beck K. D., Valverde J., Alexi T., Poulsen K., Moffat B., Vandlen R. A., Rosenthal A. and Hefti F. (1995) Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 373, 339341.
  • Blasi J., Chapman E. R., Link E., Binz T., Yamasaki S., De Camilli P., Sudhof T. C., Niemann H. and Jahn R. (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365, 160163.
  • Blum M. (1998) A null mutation in TGF-alpha leads to a reduction in midbrain dopaminergic neurons in the substantia nigra. Nat. Neurosci. 1, 374377.
  • Cameron H. A., Hazel T. G. and McKay R. D. (1998) Regulation of neurogenesis by growth factors and neurotransmitters. J. Neurobiol. 36, 287306.
  • Casper D., Roboz G. J. and Blum M. (1994) Epidermal growth factor and basic fibroblast growth factor have independent actions on mesencephalic dopamine neurons in culture. J. Neurochem. 62, 21662177.
  • Daub H., Weiss F. U., Wallasch C. and Ullrich A. (1996) Role of transactivation of the EGF receptor in signaling by G-protein-coupled receptors. Nature 379, 557560.
  • Futamura T., Toyooka K., Iritani S., Niizato K., Nakamura R., Tsuchiya K., Someya T., Kakita A., Takahashi H. and Nawa H. (2002) Abnormal expression of epidermal growth factor and its receptor in the forebrain and serum of schizophrenic patients. Mol. Psychiatry 7, 673682.
  • Futamura T., Kakita A., Tohmi M., Sotoyama H., Takahashi H. and Nawa H. (2003) Neonatal perturbation of neurotrophic signaling results in abnormal sensorimotor gating and social interaction in adults: implication for epidermal growth factor in cognitive development. Mol. Psychiatry 8, 1929.
  • Gechtman Z., Alonso J. L., Raab G., Ingber D. E. and Klagsbrun M. (1999) The shedding of membrane-anchored heparin-binding epidermal-like growth factor is regulated by the Raf/mitogen-activated protein kinase cascade and by cell adhesion and spreading. J. Biol. Chem. 274, 2882828835.
  • Higashiyama S., Iwabuki H., Morimoto C., Hieda M., Inoue H. and Matsushita N. (2008) Membrane-anchored growth factors, the epidermal growth factor family: beyond receptor ligands. Cancer Sci. 99, 214220.
  • Ho A. and Blum M. (1997) Regulation of astroglial-derived dopaminergic neurotrophic factors by interleukin-1 beta in the striatum of young and middle-aged mice. Exp. Neurol. 148, 348359.
  • Horiuchi K., Le Gall S., Schulte M., Yamaguchi T., Reiss K., Murphy G., Toyama Y., Hartmann D., Saftig P. and Blobel C. P. (2007) Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Mol. Biol. Cell 18, 176188.
  • Iwakura Y., Nagano T., Kawamura M., Horikawa Y., Ibaraki K., Takei N. and Nawa H. (2001) N-Methyl-d-aspartate-induced alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptor down-regulation involves interaction of the carboxyl terminus of GluR2/3 with Pick1. Ligand-binding studies using Sindbis vectors carrying AMPA receptor decoys. J. Biol. Chem. 276, 4002540032.
  • Iwakura Y., Piao Y. S., Mizuno M., Takei N., Kakita A., Takahashi H. and Nawa H. (2005) Influence of dopaminergic lesion on epidermal growth factor-ErbB1 signals in Parkinson’s disease and its model: neurotrophic implication in nigrostriatal neurons. J. Neurochem. 93, 974983.
  • Iwakura Y., Nawa H., Sora I. and Chao M. V. (2008) Dopamine D1 receptor-induced signaling through TrkB receptors in striatal neurons. J. Biol. Chem. 283, 1579915806.
  • Iwakura Y., Zheng Y., Sibilia M., Abe Y., Piao Y. S., Yokomaku D., Wang R., Ishizuka Y., Takei N. and Nawa H. (2011) Qualitative and quantitative re-evaluation of epidermal growth factor-ErbB1 action on developing midbrain dopaminergic neurons in vivo and in vitro: target-derived neurotrophic signaling (Part 1). J. Neurochem 118, 4556.
  • Izumi Y., Hirata M., Hasuwa H., Iwamoto R., Umata T., Miyado K., Tamai Y., Kurisaki T., Sehara-Fujisawa A., Ohno S. and Mekada E. (1998) A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor. EMBO J. 17, 72607272.
  • Kansra V., Chen C. and Lokhandwala M. F. (1995) Dopamine causes stimulation of protein kinase C in rat renal proximal tubules by activating dopamine D1 receptors. Eur. J. Pharmacol. 289, 391394.
  • Karkkainen I., Rybnikova E., Pelto-Huikko M. and Huovila A. P. (2000) Metalloprotease-disintegrin (ADAM) genes are widely and differentially expressed in the adult CNS. Mol. Cell. Neurosci. 15, 547560.
  • Kim G. W., Gasche Y., Grzeschik S., Copin J. C., Maier C. M. and Chan P. H. (2003) Neurodegeneration in striatum induced by the mitochondrial toxin 3-nitropropionic acid: role of matrix metalloproteinase-9 in early blood-brain barrier disruption? J. Neurosci. 23, 87338742.
  • Le Gall S. M., Auger R., Dreux C. and Mauduit P. (2003) Regulated cell surface pro-EGF ectodomain shedding is a zinc metalloprotease-dependent process. J. Biol. Chem. 278, 4525545268.
  • Merlos-Suarez A., Ruiz-Paz S., Baselga J. and Arribas J. (2001) Metalloprotease-dependent protransforming growth factor-alpha ectodomain shedding in the absence of tumor necrosis factor-alpha-converting enzyme. J. Biol. Chem. 276, 4851048517.
  • Mizuno M., Sotoyama H., Narita E., Kawamura H., Namba H., Zheng Y., Eda T. and Nawa H. (2007) A cyclooxygenase-2 inhibitor ameliorates behavioral impairments induced by striatal administration of epidermal growth factor. J. Neurosci. 27, 1011610127.
  • Moss M. L. and Rasmussen F. H. (2007) Fluorescent substrates for the proteinases ADAM17, ADAM10, ADAM8, and ADAM12 useful for high-throughput inhibitor screening. Anal. Biochem. 366, 144148.
  • Namba H., Zheng Y., Abe Y. and Nawa H. (2009) Epidermal growth factor administrated in the periphery influences excitatory synaptic inputs onto midbrain dopaminergic neurons in postnatal mice. Neuroscience 158, 17311741.
  • O’Keeffe G. C., Tyers P., Aarsland D., Dalley J. W., Barker R. A. and Caldwell M. A. (2009) Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc. Natl Acad. Sci. USA 106, 87548759.
  • Olson L. (1997) The coming of age of the GDNF family and its receptors: gene delivery in a rat Parkinson model may have clinical implications. Trends Neurosci. 20, 277279.
  • Ozaki M., Itoh K., Miyakawa Y., Kishida H. and Hashikawa T. (2004) Protein processing and releases of neuregulin-1 are regulated in an activity-dependent manner. J. Neurochem. 91, 176188.
  • Pandiella A. and Massague J. (1991) Multiple signals activate cleavage of the membrane transforming growth factor-alpha precursor. J. Biol. Chem. 266, 57695773.
  • Piao Y. S., Iwakura Y., Takei N. and Nawa H. (2005) Differential distributions of peptides in the epidermal growth factor family and phosphorylation of EGFR receptor in adult rat brain. Neurosci. Lett. 390, 2124.
  • Prenzel N., Zwick E., Daub H., Leserer M., Abraham R., Wallasch C. and Ullrich A. (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884888.
  • Purves D. (1986) Trophic theory of neural connections. Trends Neurosci. 9, 486489.
  • Roghani M., Becherer J. D., Moss M. L., Atherton R. E., Erdjument-Bromage H., Arribas J., Blackburn R. K., Weskamp G., Tempst P. and Blobel C. P. (1999) Metalloprotease-disintegrin MDC9: intracellular maturation and catalytic activity. J. Biol. Chem. 274, 35313540.
  • Sahin U., Weskamp G., Kelly K., Zhou H. M., Higashiyama S., Peschon J., Hartmann D., Saftig P. and Blobel C. P. (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J. Cell Biol. 164, 769779.
  • Schneider M. R. and Wolf E. (2009) The epidermal growth factor receptor ligands at a glance. J. Cell. Physiol. 218, 460466.
  • Seroogy K. B., Gall C. M., Lee D. C. and Kornblum H. I. (1995) Proliferative zones of postnatal rat brain express epidermal growth factor receptor mRNA. Brain Res. 670, 157164.
  • Shishido Y., Tanaka T., Piao Y. S., Araki K., Takei N., Higashiyama S. and Nawa H. (2006) Activity-dependent shedding of heparin-binding EGF-like growth factor in brain neurons. Biochem. Biophys. Res. Commun. 348, 963970.
  • Surmeier D. J., Bargas J., Hemmings Jr. H. C., Nairn A. C. and Greengard P. (1995) Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14, 385397.
  • Unsicker K. (1994) Growth factors in Parkinson’s disease. Prog. Growth Factor Res. 5, 7387.
  • Volpe B. T., Wildmann J. and Altar C. A. (1998) Brain-derived neurotrophic factor prevents the loss of nigral neurons induced by excitotoxic striatal-pallidal lesions. Neuroscience 83, 741748.
  • Winner B., Desplats P., Hagl, C., Klucken J., Aigner R., Ploetz S., Laemke J., Karl A., Aigner L., Masliah E., Buerger E. and Winkler J. (2009) Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model. Exp. Neurol. 219, 543552.
  • Wong R. W. and Guillaud L. (2004) The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine Growth Factor Rev. 15, 147156.
  • Yan Z., Feng J., Fienberg A. A. and Greengard P. (1999) D(2) dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. Proc. Natl Acad. Sci. USA 96, 1160711612.
  • Yan Y., Shirakabe K. and Werb Z. (2002) The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptors. J. Cell Biol. 158, 221226.
  • Yokozeki T., Wakatsuki S., Hatsuzawa K., Black R. A., Wada I. and Sehara-Fujisawa A. (2007) Meltrin beta (ADAM19) mediates ectodomain shedding of Neuregulin beta1 in the Golgi apparatus: fluorescence correlation spectroscopic observation of the dynamics of ectodomain shedding in living cells. Genes Cells 12, 329343.