SEARCH

SEARCH BY CITATION

References

  • Alerte T. N., Akinfolarin A. A., Friedrich E. E., Mader S. A., Hong C. S. and Perez R. G. (2008) Alpha-synuclein aggregation alters tyrosine hydroxylase phosphorylation and immunoreactivity: lessons from viral transduction of knockout mice. Neurosci. Lett. 435, 2429.
  • Berendse H. W. and Ponsen M. M. (2009) Diagnosing premotor Parkinson’s disease using a two-step approach combining olfactory testing and DAT SPECT imaging. Parkinsonism Relat. Disord. 15(Suppl 3), S26S30.
  • Bing G., Zhang Y., Watanabe Y., McEwen B. S. and Stone E. A. (1994) Locus coeruleus lesions potentiate neurotoxic effects of MPTP in dopaminergic neurons of the substantia nigra. Brain Res. 668, 261265.
  • Bloch A., Probst A., Bissig H., Adams H. and Tolnay M. (2006) Alpha-synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol. Appl. Neurobiol. 32, 284295.
  • von Bohlen und Halbach O., Schober A., Hertel R. and Unsicker K. (2005) MPTP treatment impairs tyrosine hydroxylase immunopositive fibers not only in the striatum, but also in the amygdala. Neurodegener. Dis. 2, 4448.
  • Braak H. and Braak E. (2000) Pathoanatomy of Parkinson’s disease. J. Neurol. 247(Suppl 2), II3II10.
  • Braak H. and Del Tredici K. (2008) Invited Article: nervous system pathology in sporadic Parkinson disease. Neurology 70, 19161925.
  • Braak H., Braak E., Yilmazer D., Schultz C., de Vos R. A. and Jansen E. N. (1995) Nigral and extranigral pathology in Parkinson’s disease. J. Neural Transm. Suppl. 46, 1531.
  • Braak H., Braak E., Yilmazer D., de Vos R. A., Jansen E. N. and Bohl J. (1996) Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J. Neural Transm. 103, 455490.
  • Braak H., Rub U. and Braak E. (2000) Neuroanatomy of Parkinson disease. Changes in the neuronal cytoskeleton of a few disease-susceptible types of neurons lead to progressive destruction of circumscribed areas in the limbic and motor systems. Nervenarzt 71, 459469.
  • Braak H., Del Tredici K., Rub U., de Vos R. A., Jansen Steur E. N. and Braak E. (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197211.
  • Braak H., Sastre M., Bohl J. R., de Vos R. A. and Del Tredici K. (2007) Parkinson’s disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol. 113, 421429.
  • Chadha A., Dawson L. G., Jenner P. G. and Duty S. (2000) Effect of unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway on GABA(A) receptor subunit gene expression in the rodent basal ganglia and thalamus. Neuroscience 95, 119126.
  • Chen Q., Andersen A. H., Zhang Z., Ovadia A., Cass W. A., Gash D. M. and Avison M. J. (1999) Functional MRI of basal ganglia responsiveness to levodopa in parkinsonian rhesus monkeys. Exp. Neurol. 158, 6375.
  • Chera B., Schaecher K. E., Rocchini A., Imam S. Z., Ray S. K., Ali S. F. and Banik N. L. (2002) Calpain upregulation and neuron death in spinal cord of MPTP-induced parkinsonism in mice. Ann. N Y Acad. Sci. 965, 274280.
  • Chera B., Schaecher K. E., Rocchini A., Imam S. Z., Sribnick E. A., Ray S. K., Ali S. F. and Banik N. L. (2004) Immunofluorescent labeling of increased calpain expression and neuronal death in the spinal cord of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. Brain Res. 1006, 150156.
  • Choi Y. G., Park J. H. and Lim S. (2009) Acupuncture inhibits ferric iron deposition and ferritin-heavy chain reduction in an MPTP-induced parkinsonism model. Neurosci. Lett. 450, 9296.
  • Choi Y. G., Yeo S., Hong Y. M., Kim S. H. and Lim S. (2011) Changes of gene expression profiles in the cervical spinal cord by acupuncture in an MPTP-intoxicated mouse model: microarray analysis. Gene 481, 716.
  • Cohen R. M., Carson R. E., Wyatt R. J. and Doudet D. J. (1999) Opiate receptor avidity is reduced bilaterally in rhesus monkeys unilaterally lesioned with MPTP. Synapse 33, 282288.
  • Cole D. G., Growdon J. H. and DiFiglia M. (1993) Levodopa induction of Fos immunoreactivity in rat brain following partial and complete lesions of the substantia nigra. Exp. Neurol. 120, 223232.
  • Defazio G., Berardelli A., Fabbrini G. et al. (2008) Pain as a nonmotor symptom of Parkinson disease: evidence from a case-control study. Arch. Neurol. 65, 11911194.
  • Dickson D. W., Braak H., Duda J. E. et al. (2009) Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol. 8, 11501157.
  • Fernandez-Ruiz J., Guzman R., Martinez M. D., Miranda M. I., Bermudez-Rattoni F. and Drucker-Colin R. (1993) Adrenal medullary grafts restore olfactory deficits and catecholamine levels of 6-OHDA amygdala lesioned animals. J. Neural Transplant. Plast. 4, 289297.
  • Forno L. S. (1987) The Lewy body in Parkinson’s disease. Adv. Neurol. 45, 3543.
  • Forno L. S., Langston J. W., DeLanney L. E., Irwin I. and Ricaurte G. A. (1986) Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann. Neurol. 20, 449455.
  • Fournier M., Vitte J., Garrigue J. et al. (2009) Parkin deficiency delays motor decline and disease manifestation in a mouse model of synucleinopathy. PLoS ONE 4, e6629.
  • Franco J., Prediger R. D., Pandolfo P., Takahashi R. N., Farina M. and Dafre A. L. (2007) Antioxidant responses and lipid peroxidation following intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats: increased susceptibility of olfactory bulb. Life Sci. 80, 19061914.
  • Freichel C., Neumann M., Ballard T. et al. (2007) Age-dependent cognitive decline and amygdala pathology in alpha-synuclein transgenic mice. Neurobiol. Aging 28, 14211435.
  • Fuentes R., Petersson P., Siesser W. B., Caron M. G. and Nicolelis M. A. (2009) Spinal cord stimulation restores locomotion in animal models of Parkinson’s disease. Science 323, 15781582.
  • Fuentes R., Petersson P. and Nicolelis M. A. (2010) Restoration of locomotive function in Parkinson’s disease by spinal cord stimulation: mechanistic approach. Eur. J. Neurosci. 32, 11001108.
  • Gao Z., Liu Y. and Wei X. (1998) A pathological study on the autotransplantation of monkey’s cervical sympathetic ganglion into brain for the treatment of Parkinson’s disease. Zhonghua Bing Li Xue Za Zhi 27, 113116.
  • Garvey J., Petersen M., Waters C. M., Rose S. P., Hunt S., Briggs R., Jenner P. and Marsden C. D. (1986) Administration of MPTP to the common marmoset does not alter cortical cholinergic function. Mov. Disord. 1, 129134.
  • Gibb W. R. and Lees A. J. (1989) The significance of the Lewy body in the diagnosis of idiopathic Parkinson’s disease. Neuropathol. Appl. Neurobiol. 15, 2744.
  • Gibb W. R., Mountjoy C. Q., Mann D. M. and Lees A. J. (1989a) A pathological study of the association between Lewy body disease and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 52, 701708.
  • Gibb W. R., Terruli M., Lees A. J., Jenner P. and Marsden C. D. (1989b) The evolution and distribution of morphological changes in the nervous system of the common marmoset following the acute administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Mov. Disord. 4, 5374.
  • Gu X. L., Long C. X., Sun L., Xie C., Lin X. and Cai H. (2011) Astrocytic expression of Parkinson’s disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol. Brain 3, 12.
  • Henderson J. M., Schleimer S. B., Allbutt H., Dabholkar V., Abela D., Jovic J. and Quinlivan M. (2005) Behavioural effects of parafascicular thalamic lesions in an animal model of parkinsonism. Behav. Brain Res. 162, 222232.
  • Herting B., Bietenbeck S., Scholz K., Hähner A., Hummel T. and Reichmann H. (2008) Olfactory dysfunction in Parkinson’s disease: its role as a new cardinal sign in early and differential diagnosis. Nervenarzt 79, 175184.
  • Hoglinger G. U., Feger J., Prigent A., Michel P. P., Parain K., Champy P., Ruberg M., Oertel W. H. and Hirsch E. C. (2003) Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J. Neurochem. 84, 491502.
  • Hornykiewicz O. (2008) Basic research on dopamine in Parkinson’s disease and the discovery of the nigrostriatal dopamine pathway: the view of an eyewitness. Neurodegener. Dis. 5, 114117.
  • Huang C. C. and Lee E. H. (1995) Alteration of corticotropin-releasing factor immunoreactivity in MPTP-treated rats. J. Neurosci. Res. 41, 471480.
  • Itakura T., Kamei I., Nakai K., Naka Y., Nakakita K., Imai H. and Komai N. (1988) Autotransplantation of the superior cervical ganglion into the brain. A possible therapy for Parkinson’s disease. J. Neurosurg. 68, 955959.
  • Jellinger K. A. (1999) Post mortem studies in Parkinson’s disease–is it possible to detect brain areas for specific symptoms? J. Neural Transm. Suppl. 56, 129.
  • Jellinger K. A. (2009) Formation and development of Lewy pathology: a critical update. J. Neurol. 256(Suppl 3), 270279.
  • Jenkins B. G., Sanchez-Pernaute R., Brownell A. L., Chen Y. C. and Isacson O. (2004) Mapping dopamine function in primates using pharmacologic magnetic resonance imaging. J. Neurosci. 24, 95539560.
  • Jouve L., Salin P., Melon C. and Kerkerian-Le Goff L. (2010) Deep brain stimulation of the center median-parafascicular complex of the thalamus has efficient anti-parkinsonian action associated with widespread cellular responses in the basal ganglia network in a rat model of Parkinson’s disease. J. Neurosci. 30, 99199928.
  • Kalaitzakis M. E., Graeber M. B., Gentleman S. M. and Pearce R. K. (2008) Controversies over the staging of alpha-synuclein pathology in Parkinson’s disease. Acta Neuropathol. 116, 125128; author reply 129–131.
  • Kalaitzakis M. E., Graeber M. B., Gentleman S. M. and Pearce R. K. (2009) Parkinson disease: extranigral, multisystem, and {alpha}-synuclein “plus”. Arch. Neurol. 66, 914915; author reply 915–916.
  • Kamo H., Kim S. U., McGeer P. L. and Shin D. H. (1986) Functional recovery in a rat model of Parkinson’s disease following transplantation of cultured human sympathetic neurons. Brain Res. 397, 372376.
  • Kang J. M., Park H. J., Choi Y. G., Choe I. H., Park J. H., Kim Y. S. and Lim S. (2007) Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model. Brain Res. 1131, 211219.
  • Kerkerian-Le Goff L., Bacci J. J., Jouve L., Melon C. and Salin P. (2009) Impact of surgery targeting the caudal intralaminar thalamic nuclei on the pathophysiological functioning of basal ganglia in a rat model of Parkinson’s disease. Brain Res. Bull. 78, 8084.
  • Klos K. J., Josephs K. A., Parisi J. E. and Dickson D. W. (2005) Alpha-synuclein immunohistochemistry in two cases of co-occurring idiopathic Parkinson’s disease and motor neuron disease. Mov. Disord. 20, 15151520.
  • Klos K. J., Ahlskog J. E., Josephs K. A., Apaydin H., Parisi J. E., Boeve B. F., DeLucia M. W. and Dickson D. W. (2006) Alpha-synuclein pathology in the spinal cords of neurologically asymptomatic aged individuals. Neurology 66, 11001102.
  • Lane E. and Dunnett S. (2008) Animal models of Parkinson’s disease and L-dopa induced dyskinesia: how close are we to the clinic? Psychopharmacology (Berl) 199, 303312.
  • Langston J. W. (2006) The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann. Neurol. 59, 591596.
  • Lauwers E., Debyser Z., Van Dorpe J., De Strooper B., Nuttin B. and Baekelandt V. (2003) Neuropathology and neurodegeneration in rodent brain induced by lentiviral vector-mediated overexpression of alpha-synuclein. Brain Pathol. 13, 364372.
  • Lee M. K., Stirling W., Xu Y. et al. (2002) Human alpha-synuclein-harboring familial Parkinson’s disease-linked Ala-53 --> Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc. Natl Acad. Sci. USA 99, 89688973.
  • Lim S. Y., Fox S. H. and Lang A. E. (2009) Overview of the extranigral aspects of Parkinson disease. Arch. Neurol. 66, 167172.
  • Lin F. K., Xin Y., Gao D. M., Xiong Z. and Chen J. G. (2007) [Effects of electrical stimulation of the parafascicular nucleus on the neuronal activities of the subthalamic nucleus and the ventromedial nucleus in rats]. Sheng Li Xue Bao 59, 7985.
  • Lin C. H., Huang J. Y., Ching C. H. and Chuang J. I. (2008) Melatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of D2 receptor in rotenone-induced parkinsonian rats. J. Pineal Res. 44, 205213.
  • Liu B. and Xie J. (2004) Increased dopamine release in vivo by estradiol benzoate from the central amygdaloid nucleus of Parkinson’s disease model rats. J. Neurochem. 90, 654658.
  • Lyden A., Bondesson U., Larsson B. S., Lindquist N. G. and Olsson L. I. (1985) Autoradiography of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): uptake in the monoaminergic pathways and in melanin containing tissues. Acta Pharmacol. Toxicol. (Copenh) 57, 130135.
  • Marin C., Aguilar E. and Bonastre M. (2008) Effect of locus coeruleus denervation on levodopa-induced motor fluctuations in hemiparkinsonian rats. J. Neural Transm. 115, 11331139.
  • Martin L. J., Pan Y., Price A. C., Sterling W., Copeland N. G., Jenkins N. A., Price D. L. and Lee M. K. (2006) Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci. 26, 4150.
  • Mavridis M., Degryse A. D., Lategan A. J., Marien M. R. and Colpaert F. C. (1991) Effects of locus coeruleus lesions on parkinsonian signs, striatal dopamine and substantia nigra cell loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in monkeys: a possible role for the locus coeruleus in the progression of Parkinson’s disease. Neuroscience 41, 507523.
  • Melrose H. L., Lincoln S. J., Tyndall G. M. and Farrer M. J. (2006) Parkinson’s disease: a rethink of rodent models. Exp. Brain Res. 173, 196204.
  • Melrose H. L., Kent C. B., Taylor J. P. et al. (2007) A comparative analysis of leucine-rich repeat kinase 2 (Lrrk2) expression in mouse brain and Lewy body disease. Neuroscience 147, 10471058.
  • Mendritzki S., Schmidt S., Sczepan T., Zhu X.-R., Segelcke D. and Lubbert H. (2010) Spinal cord pathology in alpha-synuclein transgenic mice. Parkinson’s Disease 2010, 375462.
  • Meredith G. E., Sonsalla P. K. and Chesselet M. F. (2008) Animal models of Parkinson’s disease progression. Acta Neuropathol. 115, 385398.
  • Miguelez C., Grandoso L. and Ugedo L. (2011) Locus coeruleus and dorsal raphe neuron activity and response to acute antidepressant administration in a rat model of Parkinson’s disease. Int. J. Neuropsychopharmacol. 14, 187200.
  • Mizobuchi M., Hineno T., Kakimoto Y. and Hiratani K. (1993) Increase of plasma adrenocorticotrophin and cortisol in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated dogs. Brain Res. 612, 319321.
  • Morris J. C., Drazner M., Fulling K., Grant E. A. and Goldring J. (1989) Clinical and pathological aspects of parkinsonism in Alzheimer’s disease. A role for extranigral factors? Arch. Neurol. 46, 651657.
  • Muhlack S., Konietzka S., Woitalla D., Przuntek H. and Müller T. (2004) Simple movement sequences better correlate to levodopa plasma levels than complex ones. J. Neural Transm. Suppl. 68, 5360.
  • Müller T., Kuhn W., Büttner T., Eising E., Coenen H., Haas M. and Przuntek H. (1998) Colour vision abnormalities do not correlate with dopaminergic nigrostriatal degeneration in Parkinson’s disease. J. Neurol. 245, 659664.
  • Murphy K. E., Karaconji T., Hardman C. D. and Halliday G. M. (2008) Excessive dopamine neuron loss in progressive supranuclear palsy. Mov. Disord. 23, 607610.
  • Nakai M., Itakura T., Kamei I., Nakai K., Naka Y., Imai H. and Komai N. (1990) Autologous transplantation of the superior cervical ganglion into the brain of parkinsonian monkeys. J. Neurosurg. 72, 9195.
  • Nakamura S. and Vincent S. R. (1986) Histochemistry of MPTP oxidation in the rat brain: sites of synthesis of the parkinsonism-inducing toxin MPP+. Neurosci. Lett. 65, 321325.
  • Nakao N., Itakura T., Uematsu Y. and Komai N. (1995) Transplantation of cultured sympathetic ganglionic neurons into parkinsonian rat brain: survival and function of graft. Acta Neurochir. (Wien) 133, 6167.
  • Nakao N., Shintani-Mizushima A., Kakishita K. and Itakura T. (2004) The ability of grafted human sympathetic neurons to synthesize and store dopamine: a potential mechanism for the clinical effect of sympathetic neuron autografts in patients with Parkinson’s disease. Exp. Neurol. 188, 6573.
  • Neumann M., Kahle P. J., Giasson B. I. et al. (2002) Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies. J. Clin. Invest. 110, 14291439.
  • Nowak P., Noras L., Jochem J., Szkilnik R., Brus H., Korossy E., Drab J., Kostrzewa R. M. and Brus R. (2009) Histaminergic activity in a rodent model of Parkinson’s disease. Neurotox. Res. 15, 246251.
  • O’Neill J., Schuff N., Marks Jr W. J.., Feiwell R., Aminoff M. J. and Weiner M. W. (2002) Quantitative 1H magnetic resonance spectroscopy and MRI of Parkinson’s disease. Mov. Disord. 17, 917927.
  • Orieux G., Francois C., Feger J., Yelnik J., Vila M., Ruberg M., Agid Y. and Hirsch E. C. (2000) Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson’s disease. Neuroscience 97, 7988.
  • Oueslati A., Breysse N., Amalric M., Kerkerian-Le Goff L. and Salin P. (2005) Dysfunction of the cortico-basal ganglia-cortical loop in a rat model of early parkinsonism is reversed by metabotropic glutamate receptor 5 antagonism. Eur. J. Neurosci. 22, 27652774.
  • Pahapill P. A. and Lozano A. M. (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123(Pt 9), 17671783.
  • Pallini R., Fernandez E., Lauretti L. et al. (1996) Superior cervical ganglion regenerating axons through peripheral nerve grafts and reversal of behavioral deficits in hemiparkinsonian rats. J. Neurosurg. 84, 487493.
  • Parr-Brownlie L. C., Poloskey S. L., Flanagan K. K., Eisenhofer G., Bergstrom D. A. and Walters J. R. (2007) Dopamine lesion-induced changes in subthalamic nucleus activity are not associated with alterations in firing rate or pattern in layer V neurons of the anterior cingulate cortex in anesthetized rats. Eur. J. Neurosci. 26, 19251939.
  • Parr-Brownlie L. C., Poloskey S. L., Bergstrom D. A. and Walters J. R. (2009) Parafascicular thalamic nucleus activity in a rat model of Parkinson’s disease. Exp. Neurol. 217, 269281.
  • Pierantozzi M., Palmieri M. G., Galati S. et al. (2008) Pedunculopontine nucleus deep brain stimulation changes spinal cord excitability in Parkinson’s disease patients. J. Neural Transm. 115, 731735.
  • Poewe W. (2009) Clinical measures of progression in Parkinson’s disease. Mov. Disord. 24(Suppl 2), S671S676.
  • Poewe W. and Mahlknecht P. (2009) The clinical progression of Parkinson’s disease. Parkinsonism Relat. Disord. 15(Suppl 4), S28S32.
  • Probst A., Bloch A. and Tolnay M. (2008) New insights into the pathology of Parkinson’s disease: does the peripheral autonomic system become central? Eur. J. Neurol. 15(Suppl 1), 14.
  • Przuntek H., Muller T. and Riederer P. (2004) Diagnostic staging of Parkinson’s disease: conceptual aspects. J. Neural Transm. 111, 201216.
  • Ray S. K., Wilford G. G., Ali S. F. and Banik N. L. (2000) Calpain upregulation in spinal cords of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease. Ann. N Y Acad. Sci. 914, 275283.
  • Rolland A. S., Herrero M. T., Garcia-Martinez V., Ruberg M., Hirsch E. C. and Francois C. (2007) Metabolic activity of cerebellar and basal ganglia-thalamic neurons is reduced in parkinsonism. Brain 130, 265275.
  • Rommelfanger K. S., Edwards G. L., Freeman K. G., Liles L. C., Miller G. W. and Weinshenker D. (2007) Norepinephrine loss produces more profound motor deficits than MPTP treatment in mice. Proc. Natl Acad. Sci. USA 104, 1380413809.
  • Sage J. I., Kortis H. I. and Sommer W. (1990) Evidence for the role of spinal cord systems in Parkinson’s disease-associated pain. Clin. Neuropharmacol. 13, 171174.
  • Samantaray S., Ray S. K., Ali S. F. and Banik N. L. (2006) Calpain activation in apoptosis of motoneurons in cell culture models of experimental parkinsonism. Ann. N Y Acad. Sci. 1074, 349356.
  • Samantaray S., Knaryan V. H., Guyton M. K., Matzelle D. D., Ray S. K. and Banik N. L. (2007) The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats. Neuroscience 146, 741755.
  • Samantaray S., Butler J. T., Ray S. K. and Banik N. L. (2008a) Extranigral neurodegeneration in Parkinson’s disease. Ann. N Y Acad. Sci. 1139, 331336.
  • Samantaray S., Knaryan V. H., Butler J. T., Ray S. K. and Banik N. L. (2008b) Spinal cord degeneration in C57BL/6N mice following induction of experimental parkinsonism with MPTP. J. Neurochem. 104, 13091320.
  • Samantaray S., Ray S. K. and Banik N. L. (2008c) Calpain as a potential therapeutic target in Parkinson’s disease. CNS Neurol. Disord. Drug Targets 7, 305312.
  • Sandyk R., Iacono R. P. and Kay S. R. (1990) The hypothalamus in MPTP-induced parkinsonism. Ital. J. Neurol. Sci. 11, 367372.
  • Sasaki S., Shirata A., Yamane K. and Iwata M. (2008) Involvement of spinal motor neurons in parkin-positive autosomal recessive juvenile parkinsonism. Neuropathology 28, 7480.
  • Schell H., Hasegawa T., Neumann M. and Kahle P. J. (2009) Nuclear and neuritic distribution of serine-129 phosphorylated alpha-synuclein in transgenic mice. Neuroscience 160, 796804.
  • Schintu N., Frau L., Ibba M., Garau A., Carboni E. and Carta A. R. (2009) Progressive dopaminergic degeneration in the chronic MPTPp mouse model of Parkinson’s disease. Neurotox. Res. 16, 127139.
  • Schneider E., Fischer P. A., Jacobi P., Becker H. and Hacker H. (1979) The significance of cerebral atrophy for the symptomatology of Parkinson’s disease. J. Neurol. Sci. 42, 187197.
  • Schwartzman R. J. and Alexander G. M. (1985) Changes in the local cerebral metabolic rate for glucose in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of Parkinson’s disease. Brain Res. 358, 137143.
  • Sherer T. B., Betarbet R., Testa C. M. et al. (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J. Neurosci. 23, 1075610764.
  • Shirakashi Y., Kawamoto Y., Tomimoto H., Takahashi R. and Ihara M. (2006) alpha-Synuclein is colocalized with 14-3-3 and synphilin-1 in A53T transgenic mice. Acta Neuropathol. 112, 681689.
  • Sotiriou E., Vassilatis D. K., Vila M. and Stefanis L. (2010) Selective noradrenergic vulnerability in alpha-synuclein transgenic mice. Neurobiol. Aging 31, 21032114.
  • Srinivasan J. and Schmidt W. J. (2003) Potentiation of parkinsonian symptoms by depletion of locus coeruleus noradrenaline in 6-hydroxydopamine-induced partial degeneration of substantia nigra in rats. Eur. J. Neurosci. 17, 25862592.
  • Srinivasan J. and Schmidt W. J. (2004) Treatment with alpha2-adrenoceptor antagonist, 2-methoxy idazoxan, protects 6-hydroxydopamine-induced Parkinsonian symptoms in rats: neurochemical and behavioral evidence. Behav. Brain Res. 154, 353363.
  • Tarohda T., Ishida Y., Kawai K., Yamamoto M. and Amano R. (2005) Regional distributions of manganese, iron, copper, and zinc in the brains of 6-hydroxydopamine-induced parkinsonian rats. Anal. Bioanal. Chem. 383, 224234.
  • Taylor T. N., Caudle W. M., Shepherd K. R., Noorian A., Jackson C. R., Iuvone P. M., Weinshenker D., Greene J. G. and Miller G. W. (2009) Nonmotor symptoms of Parkinson’s disease revealed in an animal model with reduced monoamine storage capacity. J. Neurosci. 29, 81038113.
  • Taylor T. N., Caudle W. M. and Miller G. W. (2011) VMAT2-deficient mice display nigral and extranigral pathology and motor and nonmotor symptoms of Parkinson’s disease. Parkinsons Dis. 2011, 124165.
  • Threlfell S., Exley R., Cragg S. J. and Greenfield S. A. (2008) Constitutive histamine H2 receptor activity regulates serotonin release in the substantia nigra. J. Neurochem. 107, 745755.
  • Truong D. D. and Wolters E. C. (2009) Recognition and management of Parkinson’s disease during the premotor (prodromal) phase. Expert Rev. Neurother. 9, 847857.
  • Truong L., Allbutt H. N., Coster M. J., Kassiou M. and Henderson J. M. (2009) Behavioural effects of a selective NMDA NR1A/2B receptor antagonist in rats with unilateral 6-OHDA+parafascicular lesions. Brain Res. Bull. 78, 9196.
  • Turner M. S., Gray T. S., Mickiewicz A. L. and Napier T. C. (2008) Fos expression following activation of the ventral pallidum in normal rats and in a model of Parkinson’s Disease: implications for limbic system and basal ganglia interactions. Brain Struct. Funct. 213, 197213.
  • Ullrich C. and Humpel C. (2009) Rotenone induces cell death of cholinergic neurons in an organotypic co-culture brain slice model. Neurochem. Res. 34, 21472153.
  • Vernon A. C., Crum W. R.,Johansson S. M. and Modo M. (2011) Evolution of extra-nigral damage predicts behavioural deficits in a rat proteasome inhibitor model of Parkinson’s disease. PLoS One 6, e17269.
  • Vivacqua G., Yin J. J., Casini A., Li X., Li Y. H., D’Este L., Chan P., Renda T. G. and Yu S. (2009) Immunolocalization of alpha-synuclein in the rat spinal cord by two novel monoclonal antibodies. Neuroscience 158, 14781487.
  • Vivacqua G., Casini A., Vaccaro R., Fornai F., Yu S. and D’Este L. (2011a) Different sub-cellular localization of alpha-synuclein in the C57BL\6J mouse’s central nervous system by two novel monoclonal antibodies. J. Chem. Neuroanat. 41, 97110.
  • Vivacqua G., Casini A., Vaccaro R., Salvi E. P., Pasquali L., Fornai F., Yu S. and D’Este L. (2011b) Spinal cord and parkinsonism: neuromorphological evidences in humans and experimental studies. J. Chem. Neuroanat. [Epub ahead of print].
  • Wakabayashi K. and Takahashi H. (1997) The intermediolateral nucleus and Clarke’s column in Parkinson’s disease. Acta Neuropathol. 94, 287289.
  • Wang S., Yan J. Y., Lo Y. K., Carvey P. M. and Ling Z. (2009a) Dopaminergic and serotoninergic deficiencies in young adult rats prenatally exposed to the bacterial lipopolysaccharide. Brain Res. 1265, 196204.
  • Wang T., Zhang Q. J., Liu J., Wu Z. H. and Wang S. (2009b) Firing activity of locus coeruleus noradrenergic neurons increases in a rodent model of Parkinsonism. Neurosci. Bull. 25, 1520.
  • Wang Y., Zhang Q. J., Liu J., Ali U., Gui Z. H., Hui Y. P., Chen L., Wu Z. H. and Li Q. (2010a) Noradrenergic lesion of the locus coeruleus increases apomorphine-induced circling behavior and the firing activity of substantia nigra pars reticulata neurons in a rat model of Parkinson’s disease. Brain Res. 1310, 189199.
  • Wang Y., Zhang Q. J., Liu J., Ali U., Gui Z. H., Hui Y. P., Wang T., Chen L. and Li Q. (2010b) Noradrenergic lesion of the locus coeruleus increases the firing activity of the medial prefrontal cortex pyramidal neurons and the role of alpha2-adrenoceptors in normal and medial forebrain bundle lesioned rats. Brain Res. 1324, 6474.
  • Willis G. L. and Sandyk R. (1992) Sensitivity of dopamine receptors in the lateral hypothalamus is altered in 6-hydroxydopamine treated rats. Int. J. Neurosci. 65, 199207.
  • Wolters E. (2009) Non-motor extranigral signs and symptoms in Parkinson’s disease. Parkinsonism Relat. Disord. 15(Suppl 3), S6S12.
  • Zarow C., Lyness S. A., Mortimer J. A. and Chui H. C. (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch. Neurol. 60, 337341.
  • Zweig R. M., Cardillo J. E., Cohen M., Giere S. and Hedreen J. C. (1993) The locus ceruleus and dementia in Parkinson’s disease. Neurology 43, 986991.