SEARCH

SEARCH BY CITATION

References

  • Abdul H. M., Sama M. A., Furman J. L. et al. (2009) Cognitive decline in Alzheimer’s disease is associated with selective changes in calcineurin/NFAT signaling. J. Neurosci. 29, 1295712969.
  • Abdul H. M., Baig I., Levine H., III, Guttmann R. P. and Norris C. M. (2011) Proteolysis of calcineurin is increased in human hippocampus during mild cognitive impairment and is stimulated by oligomeric Aβ. Aging Cell. 10, 103113.
  • Adlard P. A., Cherny R. A., Finkelstein D. I. et al. (2008) Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aβ. Neuron 59, 4355.
  • Adlard P. A., Bica L., White A. R., Nurjono M., Filiz G., Crouch P. J., Donnelly P. S., Cappai R., Finkelstein D. I. and Bush A. I. (2011) Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer’s disease. PLoS ONE 6, e17669.
  • Agostinho P. and Oliveira C. R. (2003) Involvement of calcineurin in the neurotoxic effects induced by amyloid-β and prion peptides. Eur. J. Neurosci. 17, 11891196.
  • Agostinho P., Lopes J. P., Velez Z. and Oliveira C. R. (2008) Overactivation of calcineurin induced by amyloid-β and prion proteins. Neurochem. Int. 52, 12261233.
  • Atwood C. S., Moir R. D., Huang X., Scarpa R. C., Bacarra N. M. E., Romano D. M., Hartshorn M. A., Tanzi R. E. and Bush A. I. (1998) Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J. Biol. Chem. 273, 1281712826.
  • Atwood C. S., Perry G., Zeng H. et al. (2004) Copper mediates dityrosine cross-linking of Alzheimer’s amyloid-β. Biochemistry 43, 560568.
  • Bush A. I. (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci. 26, 207214.
  • Bush A. I. (2008) Drug development based on the metals hypothesis of Alzheimer’s disease. J. Alzeimer Dis. 15, 223240.
  • Bush A. I., Pettingall W. H., Multhaup G., Paradis M., Vonsattel J.-P., Gusella J. F., Beyreuther K., Masters C. L. and Tanzi R. E. (1994) Rapid induction of Alzheimer Aβ amyloid formation by zinc. Science 265, 14641467.
  • Caragounis A., Du T., Filiz G. et al. (2007) Differential modulation of Alzheimer’s disease amyloid-β peptide accumulation by diverse classes of metal ligands. Biochem. J. 407, 435450.
  • Cherny R. A., Atwood C. S., Xilinas M. E. et al. (2001) Treatment with a copper–zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30, 665676.
  • Citron M. (2010) Alzheimer’s disease: strategies for disease modification. Nat. Rev. Drug Discov. 9, 387398.
  • Cole A. R. and Sutherland C. (2008) Measuring GSK3 expression and activity in cells. Methods Mol. Biol. 468, 4565.
  • Crouch P. J., Blake R., Duce J. A. et al. (2005) Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-β1-42. J. Neurosci. 25, 672679.
  • Crouch P. J., Harding S. M., White A. R., Camakaris J., Bush A. I. and Masters C. L. (2008) Mechanisms of Aβ mediated neurodegeneration in Alzheimer’s disease. Int. J. Biochem. Cell Biol. 40, 181198.
  • Crouch P. J., Hung L. W., Adlard P. A. et al. (2009a) Increasing Cu bioavailability inhibits Aβ oligomers and tau phosphorylation. Proc. Natl. Acad. Sci. U S A 106, 381386.
  • Crouch P. J., Tew D. J., Du T. et al. (2009b) Restored degradation of the Alzheimer’s amyloid-β peptide by targeting amyloid formation. J. Neurochem. 108, 11981207.
  • Curtain C. C., Ali F., Volitakis I., Cherny R. A., Norton R. S., Beyreuther K., Barrow C. J., Masters C. L., Bush A. I. and Barnham K. J. (2001) Alzheimer’s disease amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem. 276, 2046620473.
  • Curtain C. C., Ali F. E., Smith D. G., Bush A. I., Masters C. L. and Barnham K. J. (2003) Metal ions, pH, and cholesterol regulate the interactions of Alzheimer’s disease amyloid-β peptide with membrane lipid. J. Biol. Chem. 278, 29772982.
  • Deshpande A., Kawai H., Metherate R., Glabe C. G. and Busciglio J. (2009) A role for synaptic zinc in activity-dependent Aβ oligomer formation and accumulation at excitatory synapses. J. Neurosci. 29, 40044015.
  • Diaz N. and Suarez D. (2007) Molecular dynamics simulations of matrix metalloproteinase 2: role of the structural metal ions. Biochemistry 46, 89438952.
  • Donnelly P. S., Caragounis A., Du T. et al. (2008) Selective intracellular release of copper and zinc ions from bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloid-β peptide. J. Biol. Chem. 283, 45684577.
  • Duce J. A., Tsatsanis A., Cater M. A. et al. (2010) Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 142, 857867.
  • Faux N. G., Ritchie C. W., Gunn A. et al. (2010) PBT2 rapidly improves cognition in Alzheimer’s disease: additional phase II analyses. J. Alzheimer Dis. 20, 509516.
  • Groth R. D., Dunbar R. L. and Mermelstein P. G. (2003) Calcineurin regulation of neuronal plasticity. Biochem. Biophys. Res. Commun. 311, 11591171.
  • Haase H. and Beyersmann D. (1999) Uptake and intracellular distribution of labile and total Zn(II) in C6 rat glioma cells investigated with fluorescent probes and atomic absorption. Biometals 12, 247254.
  • Hanger D. P., Hughes K., Woodgett J. R., Brion J. P. and Anderton B. H. (1992) Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett. 147, 5862.
  • Huang X., Atwood C. S., Hartshorn M. A. et al. (1999a) The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38, 76097616.
  • Huang X., Cuajungco M. P., Atwood C. S. et al. (1999b) Cu(II) potentiation of Alzheimer Aβ neurotoxicity: correlation with cell-free hydrogen peroxide production and metal reduction. J. Biol. Chem. 274, 3711137116.
  • Jouvenceau A. and Dutar P. (2006) A role for the protein phosphatase 2B in altered hippocampal synaptic plasticity in the aged rat. J. Physiol. 99, 154161.
  • Jurado S., Biou V. and Malenka R. C. (2010) A calcineurin/AKAP complex is required for NMDA receptor-dependent long-term depression. Nat. Neurosci. 13, 10531055.
  • Kim Y., Lee Y. I., Seo M., Kim S. Y., Lee J. E., Youn H. D., Kim Y. S. and Juhnn Y. S. (2009) Calcineurin dephosphorylates glycogen synthase kinase-3 β at serine-9 in neuroblast-derived cells. J. Neurochem. 111, 344354.
  • Kuchibhotla K. V., Goldman S. T., Lattarulo C. R., Wu H. Y., Hyman B. T. and Bacskai B. J. (2008) Aβ plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59, 214225.
  • Lannfelt L., Blennow K., Zetterberg H. et al. (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 7, 779786.
  • Lannfelt L., Blennow K., Zetterberg H. et al. (2009) Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: A phase IIa, double-blind, randomised, placebo-controlled trial – erratum. Lancet Neurol. 8, 981.
  • Lee J. Y., Cole T. B., Palmiter R. D., Suh S. W. and Koh J. Y. (2002) Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc. Natl. Acad. Sci. U S A 99, 77057710.
  • Lee Y. I., Seo M., Kim Y., Kim S. Y., Kang U. G., Kim Y. S. and Juhnn Y. S. (2005) Membrane depolarization induces the undulating phosphorylation/dephosphorylation of glycogen synthase kinase 3β, and this dephosphorylation involves protein phosphatases 2A and 2B in SH-SY5Y human neuroblastoma cells. J. Biol. Chem. 280, 2204422052.
  • Malm T. M., Iivonen H., Goldsteins G. et al. (2007) Pyrrolidine dithiocarbamate activates Akt and improves spatial learning in APP/PS1 mice without affecting β-amyloid burden. J. Neurosci. 27, 37123721.
  • Mandelkow E. M., Drewes G., Biernat J., Gustke N., Van Lint J., Vandenheede J. R. and Mandelkow E. (1992) Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett. 314, 315321.
  • Martinez A. and Perez D. I. (2008) GSK-3 inhibitors: a ray of hope for the treatment of Alzheimer’s disease? J. Alzheimer Dis. 15, 181191.
  • Mukherjee A., Morales-Scheihing D., Gonzalez-Romero D., Green K., Taglialatela G. and Soto C.. (2010) Calcineurin inhibition at the clinical phase of prion disease reduces neurodegeneration, improves behavioral alterations and increases animal survival. PLoS Pathogens 6, pii: e1001138.
  • Rahman A., Grundke-Iqbal I. and Iqbal K. (2006) PP2B isolated from human brain preferentially dephosphorylates Ser-262 and Ser-396 of the Alzheimer disease abnormally hyperphosphorylated tau. J. Neural Transm. 113, 219230.
  • Read D. E. and Gorman A. M. (2009) Involvement of Akt in neurite outgrowth. Cell. Mol. Life Sci. 66, 29752984.
  • Resende R., Ferreiro E., Pereira C. and Oliveira C. R. (2008) ER stress is involved in Aβ-induced GSK-3β activation and tau phosphorylation. J. Neurosci. Res. 86, 20912099.
  • Ritchie C. W., Bush A. I., Mackinnon A. et al. (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch. Neurol. 60, 16851691.
  • Samuels I. S., Saitta S. C. and Landreth G. E. (2009) MAP’ing CNS development and cognition: an ERKsome process. Neuron 61, 160167.
  • Shioda N., Han F. and Fukunaga K. (2009) Role of Akt and ERK signaling in the neurogenesis following brain ischemia. Int. Rev. Neurobiol. 85, 375387.
  • Smith D. P., Smith D. G., Curtain C. C. et al. (2006) Copper mediated amyloid-β toxicity is associated with an intermolecular histidine bridge. J. Biol. Chem. 281, 1514515154.
  • Smith D. P., Ciccotosto G. D., Tew D. J., Fodero-Tavoletti M. T., Johanssen T., Masters C. L., Barnham K. J. and Cappai R. (2007) Concentration dependent Cu2+ induced aggregation and dityrosine formation of the Alzheimer’s disease amyloid-β peptide. Biochemistry 46, 28812891.
  • Spires-Jones T. L., Kay K., Matsouka R., Rozkalne A., Betensky R. A. and Hyman B. T. (2011) Calcineurin inhibition with systemic FK506 treatment increases dendritic branching and dendritic spine density in healthy adult mouse brain. Neurosci. Lett. 487, 260263.
  • Taglialatela G., Hogan D., Zhang W. R. and Dineley K. T. (2009) Intermediate- and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav. Brain Res. 200, 9599.
  • Takahashi K., Akaishi E., Abe Y., Ishikawa R., Tanaka S., Hosaka K. and Kubohara Y. (2003) Zinc inhibits calcineurin activity in vitro by competing with nickel. Biochem. Biophys. Res. Commun. 307, 6468.
  • Tanaka S., Akaishi E., Hosaka K., Okamura S. and Kubohara Y. (2005) Zinc ions suppress mitogen-activated interleukin-2 production in Jurkat cells. Biochem. Biophys. Res. Commun. 335, 162167.
  • Wang H. G., Pathan N., Ethell I. M., Krajewski S., Yamaguchi Y., Shibasaki F., McKeon F., Bobo T., Franke T. F. and Reed J. C. (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284, 339343.
  • White A. R., Du T., Laughton K. M. et al. (2006) Degradation of the Alzheimer disease amyloid β-peptide by metal-dependent up-regulation of metalloprotease activity. J. Biol. Chem. 281, 1767017680.
  • Wu H. Y., Tomizawa K. and Matsui H. (2007) Calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder. Acta Med. Okayama 61, 123137.
  • Wu H. Y., Hudry E., Hashimoto T. et al. (2010) Amyloid-β induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J. Neurosci. 30, 26362649.
  • Yamin G. (2009) NMDA receptor-dependent signaling pathways that underlie amyloid β-protein disruption of LTP in the hippocampus. J. Neurosci. Res. 87, 17291736.