SEARCH

SEARCH BY CITATION

References

  • Abdul-Hay S. O., Kang D., McBride M., Li L., Zhao J. and Leissring M. A. (2011) Deletion of insulin-degrading enzyme elicits antipodal, age-dependent effects on glucose and insulin tolerance. PLoS ONE 6, e20818.
  • Akatsu H., Ogawa N., Kanesaka T., Hori A., Yamamoto T., Matsukawa N. and Michikawa M. (2011) Higher activity of peripheral blood angiotensin-converting enzyme is associated with later-onset of Alzheimer’s disease. J. Neurol. Sci. 300, 6773.
  • Alikhani N., Guo L., Yan S., Du H., Pinho C. M., Chen J. X., Glaser E. and Yan S. S. (2011) Decreased proteolytic activity of the mitochondrial amyloid-β degrading enzyme, prep peptidasome, in Alzheimer’s disease brain mitochondria. J. Alzheimers Dis. [Epub ahead of print].
  • Aoyagi T., Wada T., Kojima F. et al. (1992) Deficiency of fibrinolytic enzyme activities in the serum of patients with Alzheimer-type dementia. Experientia 48, 656659.
  • Apelt J., Ach K. and Schliebs R. (2003) Aging-related down-regulation of neprilysin, a putative β-amyloid-degrading enzyme, in transgenic Tg2576 Alzheimer-like mouse brain is accompanied by an astroglial upregulation in the vicinity of β-amyloid plaques. Neurosci. Lett. 339, 183186.
  • Arregui A., Perry E. K., Rossor M. and Tomlinson B. E. (1982) Angiotensin converting enzyme in Alzheimer’s disease increased activity in caudate nucleus and cortical areas. J. Neurochem. 38, 14901492.
  • Asai M., Yagishita S., Iwata N., Saido T. C., Ishiura S. and Maruyama K. (2011) An alternative metabolic pathway of amyloid precursor protein C-terminal fragments via cathepsin B in a human neuroglioma model. FASEB J. 25, 37203730.
  • Aydin D., Filippov M. A., Tschäpe J. A., Gretz N., Prinz M., Eils R., Brors B. and Müller U. C. (2011) Comparative transcriptome profiling of amyloid precursor protein family members in the adult cortex. BMC Genomics 12, 160.
  • Backstrom J. R., Lim G. P., Cullen M. J. and Tökés Z. A. (1996) Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-β peptide (1-40). J. Neurosci. 16, 79107919.
  • Bailey J. A., Maloney B., Ge Y. W. and Lahiri D. K. (2011) Functional activity of the novel Alzheimer’s amyloid β-peptide interacting domain (AβID) in the APP and BACE1 promoter sequences and implications in activating apoptotic genes and in amyloidogenesis. Gene 488, 1322.
  • Barker R., Love S. and Kehoe P. G. (2010) Plasminogen and plasmin in Alzheimer’s disease. Brain Res. 1355, 715.
  • Barnes K. and Turner A.J. (1997) The endothelin system and endothelin-converting enzyme in the brain: molecular and cellular studies. Neurochem. Res. 22, 10331040.
  • Barnes K., Turner A. J. and Kenny A. J. (1992) Membrane localization of endopeptidase-24.11 and peptidyl dipeptidase A (angiotensin converting enzyme) in the pig brain: a study using subcellular fractionation and electron microscopic immunocytochemistry. J. Neurochem. 58, 20882096.
  • Battistini B., Daull P. and Jeng A. Y. (2005) CGS 35601, a triple inhibitor of angiotensin converting enzyme, neutral endopeptidase and endothelin converting enzyme. Cardiovasc. Drug Rev. 23, 317330.
  • Bauer C., Pardossi-Piquard R., Dunys J., Roy M. and Checler F. (2011) γ-secretase-mediated regulation of neprilysin: influence of cell density and aging and modulation by Imatinib. J. Alzheimer’s Dis. [Epub ahead of print].
  • Belyaev N. D., Nalivaeva N. N., Makova N. Z. and Turner A. J. (2009) Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep. 10, 94100.
  • Belyaev N. D., Kellett K. A., Beckett C., Makova N. Z., Revett T. J., Nalivaeva N. N., Hooper N. M. and Turner A. J. (2010) The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a β-secretase-dependent pathway. J. Biol. Chem. 285, 4144341454.
  • Bertram L., McQueen M. B., Mullin K., Blacker D. and Tanzi R. E. (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 39, 1723.
  • Blomqvist M. E., McCarthy S., Blennow K., Andersson B. and Prince J. A. (2010) Evaluation of neprilysin sequence variation in relation to CSF β-Amyloid levels and Alzheimer disease risk. Int. J. Mol. Epidemiol. Genet. 1, 4752.
  • Bodineau L., Frugière A., Marc Y., Inguimbert N., Fassot C., Balavoine F., Roques B. and Llorens-Cortes C. (2008) Orally active aminopeptidase A inhibitors reduce blood pressure: a new strategy for treating hypertension. Hypertension 51, 13181325.
  • Bulloj A., Leal M. C., Xu H., Castaño E. M. and Morelli L. (2010) Insulin-degrading enzyme sorting in exosomes: a secretory pathway for a key brain amyloid-beta degrading protease. J. Alzheimers Dis. 19, 7995.
  • Cao X. and Südhof T. C. (2001) A transcriptionally active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115120.
  • Carpentier M., Robitaille Y., DesGroseillers L., Boileau G. and Marcinkiewicz M. (2002) Declining expression of neprilysin in Alzheimer disease vasculature: possible involvement in cerebral amyloid angiopathy. J. Neuropathol. Exp. Neurol. 61, 849856.
  • Carpentier M., Guillemette C., Bailey J. L., Boileau G., Jeannotte L., DesGroseillers L. and Charron J. (2004) Reduced fertility in male mice deficient in the zinc metallopeptidase NL1. Mol. Cell. Biol. 24, 44284437.
  • Castellani R. J. and Smith M. A. (2011) Compounding artefacts with uncertainty, and an amyloid cascade hypothesis that is ‘too big to fail’. J. Pathol. 224, 147152.
  • Chaillan F. A., Rivera S., Marchetti E., Jourquin J., Werb Z., Soloway P. D., Khrestchatisky M. and Roman F. S. (2006) Involvement of tissue inhibition of metalloproteinases-1 in learning and memory in mice. Behav. Brain Res. 173, 191198.
  • Chen A. C. and Selkoe D. J. (2007) Response to: Pardossi-Piquard et al.“Presenilin-Dependent Transcriptional Control of the Aβ-Degrading Enzyme Neprilysin by Intracellular Domains of βAPP and APLP.” Neuron 46, 541554.
  • Chesneau V., Vekrellis K., Rosner M. R. and Selkoe D. J. (2000) Purified recombinant insulin-degrading enzyme degrades amyloid β-protein but does not promote its oligomerization. Biochem. J. 351, 509516.
  • Choi D. S., Wang D., Yu G. Q., Zhu G., Kharazia V. N., Paredes J. P., Chang W. S., Deitchman J. K., Mucke L. and Messing R. O. (2006) PKCε increases endothelin converting enzyme activity and reduces amyloid plaque pathology in transgenic mice. Proc. Natl Acad. Sci. USA 103, 82158220.
  • Ciaccio C., Tundo G. R., Grasso G., Spoto G., Marasco D., Ruvo M., Gioia M., Rizzarelli E. and Coletta M. (2009) Somatostatin: a novel substrate and a modulator of insulin-degrading enzyme activity. J. Mol. Biol. 385, 15561567.
  • Cook D. G., Leverenz J. B., McMillan P. J., Kulstad J. J., Ericksen S., Roth R. A., Schellenberg G. D., Jin L. W., Kovacina K. S. and Craft S. (2003) Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-ε4 allele. Am. J. Pathol. 162, 313319.
  • Cottrell G. S., Padilla B. E., Amadesi S., Poole D. P., Murphy J. E., Hardt M., Roosterman D., Steinhoff M. and Bunnett N. W. (2009) Endosomal endothelin-converting enzyme-1: a regulator of β-arrestin-dependent ERK signaling. J. Biol. Chem. 284, 2241122425.
  • Crawford F. C., Freeman M. J., Schinka J. A. et al. (2000) A polymorphism in the cystatin C gene is a novel risk factor for late-onset Alzheimer’s disease. Neurology 55, 763768.
  • Deane R., Wu Z. and Zlokovic B. V. (2004) RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid β-peptide clearance through transport across the blood-brain barrier. Stroke 35, 26282631.
  • Deb S. and Gottschall P. E. (1996) Increased production of matrix metalloproteinases in enriched astrocyte and mixed hippocampal cultures treated with β-amyloid peptides. J. Neurochem. 66, 16411647.
  • Eckman E. A. and Eckman C. B. (2005) Aβ-degrading enzymes: modulators of Alzheimer’s disease pathogenesis and targets for therapeutic intervention. Biochem. Soc. Trans. 33, 11011105.
  • Eckman E. A., Reed D. K. and Eckman C. B. (2001) Degradation of the Alzheimer’s amyloid beta peptide by endothelin-converting enzyme. J. Biol. Chem. 276, 2454024548.
  • Eckman E. A., Watson M., Marlow L., Sambamurti K. and Eckman C. B. (2003) Alzheimer’s disease beta-amyloid peptide is increased in mice deficient in endothelin-converting enzyme. J. Biol. Chem. 278, 20812084.
  • Eckman E. A., Adams S. K., Troendle F. J., Stodola B. A., Kahn M. A., Fauq A. H., Xiao H. D., Bernstein K. E. and Eckman C. B. (2006) Regulation of steady-state β-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme. J. Biol. Chem. 281, 3047130478.
  • Edbauer D., Willem M., Lammich S., Steiner H. and Haass C. (2002) Insulin-degrading enzyme rapidly removes the β-amyloid precursor protein intracellular domain (AICD). J. Biol. Chem. 277, 1338913393.
  • Eisele Y. S., Baumann M., Klebl B., Nordhammer C., Jucker M. and Kilger E. (2007) Gleevec increases levels of the amyloid precursor protein intracellular domain and of the amyloid-β degrading enzyme neprilysin. Mol. Biol. Cell 18, 35913600.
  • El-Amouri S. S., Zhu H., Yu J., Marr R., Verma I. M. and Kindy M. S. (2008) Neprilysin: an enzyme candidate to slow the progression of Alzheimer’s disease. Am. J. Pathol. 172, 13421354.
  • Emoto N. and Yanagisawa M. (1995) Endothelin-converting enzyme-2 is a membrane-bound, phosphoramidon-sensitive metalloprotease with acidic pH optimum. J. Biol. Chem. 270, 1526215268.
  • Espuny-Camacho I., Dominguez D., Merchiers P., Van Rompaey L., Selkoe D. and De Strooper B. (2010) Peroxisome proliferator-activated receptor γ enhances the activity of an insulin degrading enzyme-like metalloprotease for amyloid-β clearance. J. Alzheimers Dis. 20, 11191132.
  • Fabbro S. and Seeds N. W. (2009) Plasminogen activator activity is inhibited while neuroserpin is up-regulated in the Alzheimer disease brain. J. Neurochem. 109, 303315.
  • Fabbro S., Schaller K. and Seeds N. W. (2011) Amyloid-β levels are significantly reduced and spatial memory defects are rescued in a novel neuroserpin-deficient Alzheimer’s disease transgenic mouse model. J. Neurochem. 118, 928938.
  • Facchinetti P., Rose C., Schwartz J. C. and Ouimet T. (2003) Ontogeny, regional and cellular distribution of the novel metalloprotease neprilysin 2 in the rat: a comparison with neprilysin and endothelin-converting enzyme-1. Neuroscience 118, 627639.
  • Falkevall A., Alikhani N., Bhushan S., Pavlov P. F., Busch K., Johnson K. A., Eneqvist T., Tjernberg L., Ankarcrona M. and Glaser E. (2006) Degradation of the amyloid β-protein by the novel mitochondrial peptidasome, PreP. J. Biol. Chem. 281, 2909629104.
  • Farris W., Mansourian S., Chang Y., Lindsley L., Eckman E. A., Frosch M. P., Eckman C. B., Tanzi R. E., Selkoe D. J. and Guenette S. (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc. Natl Acad. Sci. USA 100, 41624167.
  • Ferretti M. T., Partridge V., Leon W. C. et al. (2011) Transgenic mice as a model of pre-clinical Alzheimer’s disease. Curr. Alzheimer Res. 8, 423.
  • Ferrington L., Miners J. S., Palmer L. E., Bond S. M., Povey J. E., Kelly P. A., Love S., Horsburgh K. J. and Kehoe P. G. (2011) Angiotensin II-inhibiting drugs have no effect on intraneuronal Aβ or oligomeric Aβ levels in a triple transgenic mouse model of Alzheimer’s disease. Am. J. Transl. Res. 3, 197208.
  • Fulcher I. S., Matsas R., Turner A. J. and Kenny A. J. (1982) Kidney neutral endopeptidase and the hydrolysis of enkephalin by synaptic membranes show similar sensitivity to inhibitors. Biochem. J. 203, 519522.
  • Ghaddar G., Ruchon A. F., Carpentier M., Marcinkiewicz M., Seidah N. G., Crine P., Desgroseillers L. and Boileau G. (2000) Molecular cloning and biochemical characterization of a new mouse testis soluble-zinc-metallopeptidase of the neprilysin family. Biochem. J. 347, 419429.
  • Glaser E. and Alikhani N. (2010) The organellar peptidasome, PreP: a journey from Arabidopsis to Alzheimer’s disease. Biochim. Biophys. Acta 1797, 10761080.
  • Goodger Z. V., Rajendran L., Trutzel A., Kohli B. M., Nitsch R. M. and Konietzko U. (2009) Nuclear signaling by the APP intracellular domain occurs predominantly through the amyloidogenic processing pathway. J. Cell Sci. 122, 37033714.
  • van Goor H., Melenhorst W. B., Turner A. J. and Holgate S. T. (2009) Adamalysins in biology and disease. J. Pathol. 219, 277286.
  • Guan H., Liu Y., Daily A., Police S., Kim M. H., Oddo S., LaFerla F. M., Pauly J. R., Murphy M. P. and Hersh L. B. (2009) Peripherally expressed neprilysin reduces brain amyloid burden: a novel approach for treating Alzheimer’s disease. J. Neurosci. Res. 87, 14621473.
  • Hafez D., Huang J. Y., Huynh A. M., Valtierra S., Rockenstein E., Bruno A. M., Lu B., DesGroseillers L., Masliah E. and Marr R. A. (2011) Neprilysin-2 is an important β-amyloid degrading enzyme. Am. J. Pathol. 178, 306312.
  • Hajjar I. M., Keown M., Lewis P. and Almor A. (2008) Angiotensin converting enzyme inhibitors and cognitive and functional decline in patients with Alzheimer’s disease: an observational study. Am. J. Alzheimers Dis. Other Demen. 23, 7783.
  • Hama E., Shirotani K., Masumoto H., Sekine-Aizawa Y., Aizawa H. and Saido T. C. (2001) Clearance of extracellular and cell-associated amyloid β peptide through viral expression of neprilysin in primary neurons. J. Biochem. 130, 721726.
  • Hanson L. R., Hafez D., Svitak A. L., Burns R. B., Li X., Frey W. H., II and Marr R. A. (2011) Intranasal phosphoramidon increases β-amyloid levels in wild-type and NEP/NEP2-deficient mice. J. Mol. Neurosci. 43, 424427.
  • Hardy J. (2007) Does Aβ 42 have a function related to blood homeostasis? Neurochem. Res. 32, 833835.
  • Hardy J. (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J. Neurochem. 110, 11291134.
  • Hardy J. A. and Higgins G. A. (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184185.
  • Hawkes C. A., Härtig W., Kacza J., Schliebs R., Weller R. O., Nicoll J. A. and Carare R. O. (2011) Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol. 121, 431443.
  • He G., Luo W., Li P. et al. (2010) γ-secretase activating protein is a therapeutic target for Alzheimer’s disease. Nature 467, 9598.
  • Hébert S. S., Serneels L., Tolia A., Craessaerts K., Derks C., Filippov M. A., Müller U. and De Strooper B. (2006) Regulated intramembrane proteolysis of amyloid precursor protein and regulation of expression of putative target genes. EMBO Rep. 7, 739745.
  • Helbecque N., Cottel D., Hermant X. and Amouyel P. (2007) Impact of the matrix metalloproteinase MMP-3 on dementia. Neurobiol. Aging 28, 12151220.
  • Helisalmi S., Hiltunen M., Vepsäläinen S., Iivonen S., Mannermaa A., Lehtovirta M., Koivisto A. M., Alafuzoff I. and Soininen H. (2004) Polymorphisms in neprilysin gene affect the risk of Alzheimer’s disease in Finnish patients. J. Neurol. Neurosurg. Psychiatry 75, 17461748.
  • Hemming M. L. and Selkoe D. J. (2005) Amyloid β-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J. Biol. Chem. 280, 3764437650.
  • Hemming M. L., Patterson M., Reske-Nielsen C., Lin L., Isacson O. and Selkoe D. J. (2007a) Reducing amyloid plaque burden via ex vivo gene delivery of an Aβ-degrading protease: a novel therapeutic approach to Alzheimer disease. PLoS Med. 4, e262.
  • Hemming M. L., Selkoe D. J. and Farris W. (2007b) Effects of prolonged angiotensin-converting enzyme inhibitor treatment on amyloid β-protein metabolism in mouse models of Alzheimer disease. Neurobiol. Dis. 26, 273281.
  • Hoang M. V. and Turner A. J. (1997) Novel activity of endothelin-converting enzyme: hydrolysis of bradykinin. Biochem. J. 327, 2326.
  • Hogl S., Kuhn P. H., Colombo A. and Lichtenthaler S. F. (2011) Determination of the proteolytic cleavage sites of the amyloid precursor-like protein 2 by the proteases ADAM10, BACE1 and γ-secretase. PLoS ONE 6, e21337.
  • Hong Y., Beckett C., Belyaev N. D. and Turner A. J. (2011) The impact of amyloid precursor protein signalling and histone deacetylase inhibition on neprilysin expression in human prostate cells. Int. J. Cancer Published Online doi: 10.1002/ijc.26028.
  • Hook V., Hook G. and Kindy M. (2010) Pharmacogenetic features of cathepsin B inhibitors that improve memory deficit and reduce β-amyloid related to Alzheimer’s disease. Biol. Chem. 391, 861872.
  • Hoos M. D., Ahmed M., Smith S. O. and Van Nostrand W. E. (2009) Myelin basic protein binds to and inhibits the fibrillar assembly of Aβ42 in vitro. Biochemistry 48, 47204727.
  • Howell S., Nalbantoglu J. and Crine P. (1995) Neutral endopeptidase can hydrolyze β-amyloid(1-40) but shows no effect on β-amyloid precursor protein metabolism. Peptides 16, 647652.
  • Hu J., Miyatake F., Aizu Y., Nakagawa H., Nakamura S., Tamaoka A., Takahash R., Urakami K. and Shoji M. (1999) Angiotensin-converting enzyme genotype is associated with Alzheimer disease in the Japanese population. Neurosci. Lett. 277, 6567.
  • Hu J., Igarashi A., Kamata M. and Nakagawa H. (2001) Angiotensin-converting enzyme degrades Alzheimer amyloid β-peptide (Aβ); retards Aβ aggregation, deposition, fibril formation; and inhibits cytotoxicity. J. Biol. Chem. 276, 4786347868.
  • Huang J. Y., Bruno A. M., Patel C. A., Huynh A. M., Philibert K. D., Glucksman M. J. and Marr R. A. (2008) Human membrane metallo-endopeptidase-like protein degrades both beta-amyloid 42 and beta-amyloid 40. Neuroscience 155, 258262.
  • Iijima-Ando K., Hearn S. A., Granger L., Shenton C., Gatt A., Chiang H. C., Hakker I., Zhong Y. and Iijima K. (2008) Overexpression of neprilysin reduces alzheimer amyloid-β42 (Aβ42)-induced neuron loss and intraneuronal Aβ42 deposits but causes a reduction in cAMP-responsive element-binding protein-mediated transcription, age-dependent axon pathology, and premature death in Drosophila. J. Biol. Chem. 283, 1906619076.
  • Ikeda K., Emoto N., Raharjo S. B., Nurhantari Y., Saiki K., Yokoyama M. and Matsuo M. (1999) Molecular identification and characterization of novel membrane-bound metalloprotease, the soluble secreted form of which hydrolyzes a variety of vasoactive peptides. J. Biol. Chem. 274, 3246932477.
  • Im H., Manolopoulou M., Malito E. et al. (2007) Structure of substrate-free human insulin-degrading enzyme (IDE) and biophysical analysis of ATP-induced conformational switch of IDE. J. Biol. Chem. 282, 2545325463.
  • Iwata N., Takaki Y., Fukami S., Tsubuki S. and Saido T. C. (2002) Region-specific reduction of Aβ-degrading endopeptidase, neprilysin, in mouse hippocampus upon aging. J. Neurosci. Res. 70, 493500.
  • Jacobsen J. S., Comery T. A., Martone R. L. et al. (2008) Enhanced clearance of Aβ in brain by sustaining the plasmin proteolysis cascade. Proc. Natl Acad. Sci. USA 105, 87548759.
  • Jin Z., Luxiang C., Huadong Z., Yanjiang W., Zhiqiang X., Hongyuan C., Lihua H. and Xu Y. (2009) Endothelin-converting enzyme-1 promoter polymorphisms and susceptibility to sporadic late-onset Alzheimer’s disease in a Chinese population. Dis. Markers 27, 211215.
  • Kaeser S. A., Herzig M. C., Coomaraswamy J., Kilger E., Selenica M. L., Winkler D. T., Staufenbiel M., Levy E., Grubb A. and Jucker M. (2007) Cystatin C modulates cerebral β-amyloidosis. Nat. Genet. 39, 14371439.
  • Kalinin S., Richardson J. C. and Feinstein D. L. (2009) A PPARδ agonist reduces amyloid burden and brain inflammation in a transgenic mouse model of Alzheimer’s disease. Curr. Alzheimer Res. 6, 431437.
  • Kehoe P. G., Russ C., McIlory S. et al. (1999) Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nat. Genet. 21, 7172.
  • Kehoe P. G., Katzov H., Feuk L. et al. (2003) Haplotypes extending across ACE are associated with Alzheimer’s disease. Hum. Mol. Genet. 12, 859867.
  • Kehoe P. G., Katzov H., Andreasen N. et al. (2004) Common variants of ACE contribute to variable age-at-onset of Alzheimer’s disease. Hum. Genet. 114, 478483.
  • Kerr M. A. and Kenny A. J. (1973) The purification and specificity of a neutral endopeptidase from rabbit kidney brush border. Biochem. J. 137, 477488.
  • Keynan S., Khamaisi M., Dahan R., Barnes K., Jackson C. D., Turner A. J. and Raz I. (2004) Increased expression of endothelin-converting enzyme-1c isoform in response to high glucose levels in endothelial cells. J. Vasc. Res. 41, 131140.
  • Khamaisi M., Dahan R., Hamed S., Abassi Z., Heyman S. N. and Raz I. (2009) Role of protein kinase C in the expression of endothelin converting enzyme-1. Endocrinology 150, 14401449.
  • Kilgore M., Miller C. A., Fass D. M., Hennig K. M., Haggarty S. J., Sweatt J. D. and Rumbaugh G. (2010) Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 35, 870880.
  • Kim M. J., Chae S. S., Koh Y. H., Lee S. K. and Jo S. A. (2010) Glutamate carboxypeptidase II: an amyloid peptide-degrading enzyme with physiological function in the brain. FASEB J. 24, 44914502.
  • Kim T., Hinton D. J. and Choi D. S. (2011) Protein kinase C-regulated Aβ production and clearance. Int. J. Alzheimers Dis. Published Online doi: 10.4061/2011/857368.
  • Kiss A., Kowalski J. and Melzig M. F. (2006) Effect of Epilobium angustifolium L. extracts and polyphenols on cell proliferation and neutral endopeptidase activity in selected cell lines. Pharmazie 61, 6669.
  • Kong Y., Ruan L., Qian L., Liu X. and Le Y. (2010) Norepinephrine promotes microglia to uptake and degrade amyloid β peptide through upregulation of mouse formyl peptide receptor 2 and induction of insulin-degrading enzyme. J. Neurosci. 30, 1184811857.
  • Konietzko U. (2011) AICD Nuclear Signaling and its Possible Contribution to Alzheimer’s Disease. Curr. Alzheimer Res. [Epub ahead of print].
  • Konietzko U., Goodger Z. V., Meyer M., Kohli B. M., Bosset J., Lahiri D. K. and Nitsch R. M. (2010) Co-localization of the amyloid precursor protein and Notch intracellular domains in nuclear transcription factories. Neurobiol. Aging 31, 5873.
  • Kuhn P. H., Wang H., Dislich B., Colombo A., Zeitschel U., Ellwart J. W., Kremmer E., Rossner S. and Lichtenthaler S. F. (2010) ADAM10 is the physiologically relevant, constitutive α-secretase of the amyloid precursor protein in primary neurons. EMBO J. 29, 30203032.
  • Kurochkin I. V. and Goto S. (1994) Alzheimer’s β-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett. 345, 3337.
  • Kuruppu S., Tochon-Danguy N. and Smith A. I. (2010) Role of protein kinase C in endothelin converting enzyme-1 trafficking and shedding from endothelial cells. Biochem. Biophys. Res. Commun. 398, 173177.
  • Leal M. C., Surace E. I., Holgado M. P., Ferrari C. C., Tarelli R., Pitossi F., Wisniewski T., Castaño E. M. and Morelli L. (2011) Notch signaling proteins HES-1 and Hey-1 bind to insulin degrading enzyme (IDE) proximal promoter and repress its transcription and activity: implications for cellular Aβ metabolism. Biochim. Biophys. Acta Published Online doi: 10.1016/j.bbamcr.2011.09.014.
  • Ledesma M. D., Da Silva J. S., Crassaerts K., Delacourte A., De Strooper B. and Dotti C. G. (2000) Brain plasmin enhances APP α-cleavage and Aβ degradation and is reduced in Alzheimer’s disease brains. EMBO Rep. 1, 530535.
  • Lee J. Y., Kweon H. S., Cho E., Lee J. Y., Byun H. R., Kim D. H., Kim Y. H., Han P. L. and Koh J. Y. (2007) Upregulation of tPA/plasminogen proteolytic system in the periphery of amyloid deposits in the Tg2576 mouse model of Alzheimer’s disease. Neurosci. Lett. 423, 8287.
  • Lehmann D. J., Cortina-Borja M., Warden D. R., Smith A. D., Sleegers K., Prince J. A., van Duijn C. M. and Kehoe P. G. (2005) Large meta-analysis establishes the ACE insertion-deletion polymorphism as a marker of Alzheimer’s disease. Am. J. Epidemiol. 162, 305317.
  • Leissring M. A. (2008) The AβCs of Aβ-cleaving proteases. J. Biol. Chem. 283, 2964529649.
  • Leissring M. A., Farris W., Chang A. Y., Walsh D. M., Wu X., Sun X., Frosch M. P. and Selkoe D. J. (2003a) Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40, 10871093.
  • Leissring M. A., Lu A., Condron M. M., Teplow D. B., Stein R. L., Farris W. and Selkoe D. J. (2003b) Kinetics of amyloid β-protein degradation determined by novel fluorescence- and fluorescence polarization-based assays. J. Biol. Chem. 278, 3731437320.
  • Leissring M. A., Farris W., Wu X., Christodoulou D. C., Haigis M. C., Guarente L. and Selkoe D. J. (2004) Alternative translation initiation generates a novel isoform of insulin-degrading enzyme targeted to mitochondria. Biochem. J. 383, 439446.
  • Leissring M. A., Malito E., Hedouin S. et al. (2010) Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin. PLoS ONE 5, e10504.
  • Lendon C. L., Thaker U., Harris J. M., McDonagh A. M., Lambert J. C., Chartier-Harlin M. C., Iwatsubo T., Pickering-Brown S. M. and Mann D. M. (2002) The angiotensin 1-converting enzyme insertion (I)/deletion (D) polymorphism does not influence the extent of amyloid or tau pathology in patients with sporadic Alzheimer’s disease. Neurosci. Lett. 328, 314318.
  • Liao M. C., Ahmed M., Smith S. O. and Van Nostrand W. E. (2009) Degradation of amyloid β protein by purified myelin basic protein. J. Biol. Chem. 284, 2891728925.
  • Liu Y., Guan H., Beckett T. L., Juliano M. A., Juliano L., Song E. S., Chow K. M., Murphy M. P. and Hersh L. B. (2007) In vitro and in vivo degradation of Aβ peptide by peptidases coupled to erythrocytes. Peptides 28, 23482355.
  • Liu Y., Studzinski C., Beckett T., Guan H., Hersh M. A., Murphy M. P., Klein R. and Hersh L. B. (2009) Expression of neprilysin in skeletal muscle reduces amyloid burden in a transgenic mouse model of Alzheimer disease. Mol. Ther. 17, 13811386.
  • Liu Y., Studzinski C., Beckett T., Murphy M. P., Klein R. L. and Hersh L. B. (2010) Circulating neprilysin clears brain amyloid. Mol. Cell. Neurosci. 45, 101107.
  • Liu R. M., van Groen T., Katre A., Cao D., Kadisha I., Ballinger C., Wang L., Carroll S. L. and Li L. (2011) Knockout of plasminogen activator inhibitor 1 gene reduces amyloid beta peptide burden in a mouse model of Alzheimer’s disease. Neurobiol. Aging 32, 10791089.
  • Lorenzl S., Albers D. S., LeWitt P. A., Chirichigno J. W., Hilgenberg S. L., Cudkowicz M. E. and Beal M. F. (2003) Tissue inhibitors of matrix metalloproteinases are elevated in cerebrospinal fluid of neurodegenerative diseases. J. Neurol. Sci. 207, 7176.
  • Lu Y., Wang M., Liu Z., Wang F., Da Y. and Jia J. (2009) No association between the promoter polymorphisms of PAI-1 gene and sporadic Alzheimer’s disease in Chinese Han population. Neurosci. Lett. 455, 97100.
  • Lustbader J. W., Cirilli M., Lin C. et al. (2004) ABAD directly links Aβ to mitochondrial toxicity in Alzheimer’s disease. Science 304, 448452.
  • Malito E., Hulse R. E. and Tang W. J. (2008) Amyloid β-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Cell. Mol. Life Sci. 65, 25742585.
  • Marc Y. and Llorens-Cortes C. (2011) The role of the brain renin-angiotensin system in hypertension: Implications for new treatment. Prog. Neurobiol. 95, 89103.
  • Marr R. A., Rockenstein E., Mukherjee A., Kindy M. S., Hersh L. B., Gage F. H., Verma I. M. and Masliah E. (2003) Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J. Neurosci. 23, 19921996.
  • Matsas R., Fulcher I. S., Kenny A. J. and Turner A. J. (1983) Substance P and [Leu]enkephalin are hydrolyzed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc. Natl Acad. Sci. USA 80, 31113115.
  • Meilandt W. J., Cisse M., Ho K., Wu T., Esposito L. A., Scearce-Levie K., Cheng I. H., Yu G. Q. and Mucke L. (2009) Neprilysin overexpression inhibits plaque formation but fails to reduce pathogenic Aβ oligomers and associated cognitive deficits in human amyloid precursor protein transgenic mice. J. Neurosci. 29, 19771986.
  • Melzig M. F. and Janka M. (2003) Enhancement of neutral endopeptidase activity in SK-N-SH cells by green tea extract. Phytomedicine 10, 494498.
  • Mi W., Pawlik M., Sastre M. et al. (2007) Cystatin C inhibits amyloid-β deposition in Alzheimer’s disease mouse models. Nat. Genet. 39, 14401442.
  • Miners J. S., Baig S., Palmer J., Palmer L. E., Kehoe P. G. and Love S. (2008) Aβ-degrading enzymes in Alzheimer’s disease. Brain Pathol. 18, 240252.
  • Mohajeri M. H., Wollmer M. A. and Nitsch R. M. (2002) 42-induced increase in neprilysin is associated with prevention of amyloid plaque formation in vivo. J. Biol. Chem. 277, 3546035465.
  • Morelli L., Llovera R. E., Alonso L. G., Frangione B., de Prat-Gay G., Ghiso J. and Castaño E. M. (2005) Insulin-degrading enzyme degrades amyloid peptides associated with British and Danish familial dementia. Biochem. Biophys. Res. Commun. 332, 808816.
  • Mueller-Steiner S., Zhou Y., Arai H. et al. (2006) Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer’s disease. Neuron 51, 703714.
  • Muirhead K. E., Borger E., Aitken L., Conway S. J. and Gunn-Moore F. J. (2010) The consequences of mitochondrial amyloid β-peptide in Alzheimer’s disease. Biochem. J. 426, 255270.
  • Mzhavia N., Pan H., Che F. Y., Fricker L. D. and Devi L. A. (2003) Characterization of endothelin-converting enzyme-2. Implication for a role in the nonclassical processing of regulatory peptides. J. Biol. Chem. 278, 1470414711.
  • Nakagami Y., Abe K., Nishiyama N. and Matsuki N. (2000) Laminin degradation by plasmin regulates long-term potentiation. J. Neurosci. 20, 20032010.
  • Nalivaeva N. N., Fisk L., Kochkina E. G., Plesneva S. A., Zhuravin I. A., Babusikova E., Dobrota D. and Turner A. J. (2004) Effect of hypoxia/ischemia and hypoxic preconditioning/reperfusion on expression of some amyloid-degrading enzymes. Ann. N.-Y. Acad. Sci. 1035, 2133.
  • Nalivaeva N. N., Fisk L. R., Belyaev N. D. and Turner A. J. (2008) Amyloid-degrading enzymes as therapeutic targets in Alzheimer’s disease. Curr. Alzheimer Res. 5, 212224.
  • Nalivaeva N. N., Belyaev N. D. and Turner A. J. (2009) Sodium valproate: an old drug with new roles. Trends Pharmacol. Sci. 30, 509514.
  • Nalivaeva N. N., Belyaev N. D., Lewis D. I., Pickles A. R., Makova N. Z., Bagrova D. I., Dubrovskaya N. M., Plesneva S. A., Zhuravin I. A. and Turner A. J. (2011) Effect of sodium valproate administration on brain neprilysin expression and memory in rats. J. Mol. Neurosci. Published Online doi: 10.1007/s12031-011-9644-x.
  • Neale J. H., Olszewski R. T., Zuo D., Janczura K. J., Profaci C. P., Lavin K. M., Madore J. C. and Bzdega T. (2011) Advances in understanding the peptide neurotransmitter NAAG and appearance of a new member of the NAAG neuropeptide family. J. Neurochem. 118, 490498.
  • Nelson T. J., Cui C., Luo Y. and Alkon D. L. (2009) Reduction of β-amyloid levels by novel protein kinase Cε activators. J. Biol. Chem. 284, 3451434521.
  • Noinaj N., Bhasin S. K., Song E. S., Scoggin K. E., Juliano M. A., Juliano L., Hersh L. B. and Rodgers D. W. (2011) Identification of the allosteric regulatory site of insulysin. PLoS ONE 6, 20864.
  • Oba R., Igarashi A., Kamata M., Nagata K., Takano S. and Nakagawa H. (2005) The N-terminal active centre of human angiotensin-converting enzyme degrades Alzheimer amyloid β-peptide. Eur. J. Neurosci. 21, 733740.
  • Oh-hashi K., Ohkubo K., Shizu K., Fukuda H., Hirata Y. and Kiuchi K. (2008) Biosynthesis, processing, trafficking, and enzymatic activity of mouse neprilysin 2. Mol. Cell. Biochem. 313, 103111.
  • Ohrui T., Tomita N., Sato-Nakagawa T., Matsui T., Maruyama M., Niwa K., Arai H. and Sasaki H. (2004) Effects of brain-penetrating ACE inhibitors on Alzheimer disease progression. Neurology 63, 13241325.
  • Ohyagi Y., Asahara H., Chui D. H. et al. (2005) Intracellular Aβ42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer’s disease. FASEB J. 19, 255257.
  • Orzechowski H. D., Günther A., Menzel S., Zimmermann A., Funke-Kaiser H., Real R., Subkowski T., Zollmann F. S. and Paul M. (2001) Transcriptional mechanism of protein kinase C-induced isoform-specific expression of the gene for endothelin-converting enzyme-1 in human endothelial cells. Mol. Pharmacol. 60, 13321342.
  • Ouimet T., Facchinetti P., Rose C., Bonhomme M. C., Gros C. and Schwartz J. C. (2000) Neprilysin II: A putative novel metalloprotease and its isoforms in CNS and testis. Biochem. Biophys. Res. Commun. 271, 565570.
  • Palmer J. C., Baig S., Kehoe P. G. and Love S. (2009) Endothelin-converting enzyme-2 is increased in Alzheimer’s disease and up-regulated by Aβ. Am. J. Pathol. 175, 262270.
  • Palmer J. C., Kehoe P. G. and Love S. (2010) Endothelin-converting enzyme-1 in Alzheimer’s disease and vascular dementia. Neuropathol. Appl. Neurobiol. 36, 487497.
  • Pardossi-Piquard R. and Checler F. (2011) The physiology of the β-amyloid precursor protein Intracellular Domain AICD. J. Neurochem. (in press).
  • Pardossi-Piquard R., Petit A., Kawarai T., Sunyach C., Alves da Costa C., Vincent B., Sévalle J., Pimplikar S., St George-Hyslop P. and Checler F. (2005) Presenilin-dependent transcriptional control of the Aβ-degrading enzyme neprilysin by intracellular domains of βAPP and APLP. Neuron 46, 541554.
  • Pearson H. A. and Peers C. (2006) Physiological roles for amyloid β peptides. J. Physiol. 575, 510.
  • Perrier J., Durand A., Giardina T. and Puigserver A. (2005) Catabolism of intracellular N-terminal acetylated proteins: involvement of acylpeptide hydrolase and acylase. Biochimie 87, 673685.
  • Pimplikar S. W. (2009) Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int. J. Biochem. Cell Biol. 41, 12611268.
  • Pinho C. M., Björk B. F., Alikhani N., Bäckman H. G., Eneqvist T., Fratiglioni L., Glaser E. and Graff C. (2010) Genetic and biochemical studies of SNPs of the mitochondrial Aβ-degrading protease, hPreP. Neurosci. Lett. 469, 204208.
  • Qing H., He G., Ly P. T. et al. (2008) Valproic acid inhibits Aβ production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J. Exp. Med. 205, 27812789.
  • Qiu W. Q., Walsh D. M., Ye Z., Vekrellis K., Zhang J., Podlisny M. B., Rosner M. R., Safavi A., Hersh L. B. and Selkoe D. J. (1998) Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation. J. Biol. Chem. 273, 3273032738.
  • Raharjo S. B., Emoto N., Ikeda K., Sato R., Yokoyama M. and Matsuo M. (2001) Alternative splicing regulates the endoplasmic reticulum localization or secretion of soluble secreted endopeptidase. J. Biol. Chem. 276, 2561225620.
  • Reitz C., van Rooij F. J., Soares H. D., de Maat M. P., Hofman A., Witteman J. C. and Breteler M. M. (2010) Matrix metalloproteinase 3 haplotypes and plasma amyloid β levels: the Rotterdam Study. Neurobiol. Aging 31, 715718.
  • Rivera S., Khrestchatisky M., Kaczmarek L., Rosenberg G. A. and Jaworski D. M. (2010) Metzincin proteases and their inhibitors: foes or friends in nervous system physiology? J. Neurosci. 30, 1533715357.
  • Roher A. E., Kasunic T. C., Woods A. S., Cotter R. J., Ball M. J. and Fridman R. (1994) Proteolysis of Aβ peptide from Alzheimer disease brain by gelatinase A. Biochem. Biophys. Res. Commun. 205, 17551761.
  • Roosterman D., Cottrell G. S., Padilla B. E., Muller L., Eckman C. B., Bunnett N. W. and Steinhoff M. (2007) Endothelin-converting enzyme 1 degrades neuropeptides in endosomes to control receptor recycling. Proc. Natl Acad. Sci. USA 104, 1183811843.
  • Roques B. P., Fournié-Zaluski M. C., Soroca E., Lecomte J. M., Malfroy B., Llorens C. and Schwartz J. C. (1980) The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature 288, 286288.
  • Rose C., Voisin S., Gros C., Schwartz J. C. and Ouimet T. (2002) Cell-specific activity of neprilysin 2 isoforms and enzymic specificity compared with neprilysin. Biochem. J. 363, 697705.
  • Rose J. B., Crews L., Rockenstein E. et al. (2009) Neuropeptide Y fragments derived from neprilysin processing are neuroprotective in a transgenic model of Alzheimer’s disease. J. Neurosci. 29, 11151125.
  • Šácha P., Zámecník J., Barinka C., Hlouchová K., Vícha A., Mlcochová P., Hilgert I., Eckschlager T. and Konvalinka J. (2007) Expression of glutamate carboxypeptidase II in human brain. Neuroscience 144, 13611372.
  • Saito T., Iwata N., Tsubuki S., Takaki Y., Takano J., Huang S. M., Suemoto T., Higuchi M. and Saido T. C. (2005) Somatostatin regulates brain amyloid β peptide Aβ42 through modulation of proteolytic degradation. Nat. Med. 11, 434439.
  • Sakai A., Ujike H., Nakata K. et al. (2004) Association of the Neprilysin gene with susceptibility to late-onset Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 17, 164169.
  • Seabrook G. R., Ray W. J., Shearman M. and Hutton M. (2007) Beyond amyloid: the next generation of Alzheimer’s disease therapeutics. Mol. Interv. 7, 261270.
  • Scacchi R., Gambina G., Broggio E., Ruggeri M. and Corbo R. M. (2008) C-338A polymorphism of the endothelin-converting enzyme (ECE-1) gene and the susceptibility to sporadic late-onset Alzheimer’s disease and coronary artery disease. Dis. Markers 24, 175179.
  • Schilling S., Zeitschel U., Hoffmann T. et al. (2008) Glutaminyl cyclase inhibition attenuates pyroglutamate Aβ and Alzheimer’s disease-like pathology. Nat. Med. 14, 11061111.
  • Schweizer A., Valdenaire O., Nelböck P., Deuschle U., Dumas Milne Edwards J. B., Stumpf J. G. and Löffler B. M. (1997) Human endothelin-converting enzyme (ECE-1): three isoforms with distinct subcellular localizations. Biochem. J. 328, 871877.
  • Selkoe D. J. (1991) The molecular pathology of Alzheimer’s disease. Neuron 6, 487498.
  • Sevalle J., Amoyel A., Robert P., Fournié-Zaluski M. C., Roques B. and Checler F. (2009) Aminopeptidase A contributes to the N-terminal truncation of amyloid β-peptide. J. Neurochem. 109, 248256.
  • Shen Y., Joachimiak A., Rosner M. R. and Tang W. J. (2006) Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature 443, 870874.
  • Shimizu K., Kiuchi Y., Ando K., Hayakawa M. and Kikugawa K. (2004) Coordination of oxidized protein hydrolase and the proteasome in the clearance of cytotoxic denatured proteins. Biochem. Biophys. Res. Commun. 324, 140146.
  • Shirotani K., Tsubuki S., Iwata N. et al. (2001) Neprilysin degrades both amyloid β peptides 1-40 and 1-42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. J. Biol. Chem. 276, 2189521901.
  • Smith A. I., Lew R. A., Thomas W. G. and Tochon-Danguy N. (2006) Protein kinase C regulates the cell surface activity of endothelin-converting enzyme-1. Int. J. Pept. Res. Ther. 12, 291295.
  • Smith A. M., Gibbons H. M. and Dragunow M. (2010) Valproic acid enhances microglial phagocytosis of amyloid-β(1-42). Neuroscience 169, 505515.
  • Song E. S., Juliano M. A., Juliano L. and Hersh L. B. (2003) Substrate activation of insulin-degrading enzyme (insulysin). A potential target for drug development. J. Biol. Chem. 278, 4978949794.
  • Spencer B., Marr R. A., Gindi R., Potkar R., Michael S., Adame A., Rockenstein E., Verma I. M. and Masliah E. (2011) Peripheral delivery of a CNS targeted, metalo-protease reduces Aβ toxicity in a mouse model of Alzheimer’s disease. PLoS ONE 6, e16575.
  • Sun B., Zhou Y., Halabisky B., Lo I., Cho S. H., Mueller-Steiner S., Devidze N., Wang X., Grubb A. and Gan L. (2008a) Cystatin C-cathepsin B axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer’s disease. Neuron 60, 247257.
  • Sun X., Becker M., Pankow K., Krause E., Ringling M., Beyermann M., Maul B., Walther T. and Siems W. E. (2008b) Catabolic attacks of membrane-bound angiotensin-converting enzyme on the N-terminal part of species-specific amyloid-beta peptides. Eur. J. Pharmacol. 588, 1825.
  • Tariot P. N. and Aisen P. S. (2009) Can lithium or valproate untie tangles in Alzheimer’s disease? J. Clin. Psychiatry 70, 919921.
  • Tucker H. M., Kihiko M., Caldwell J. N. et al. (2000) The plasmin system is induced by and degrades amyloid-β aggregates. J. Neurosci. 20, 39373946.
  • Turk B., Bieth J. G., Björk I., Dolenc I., Turk D., Cimerman N., Kos J., Colic A., Stoka V. and Turk V. (1995) Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins. Biol. Chem. Hoppe Seyler 376, 225230.
  • Turner A. J. and Tanzawa K. (1997) Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J. 11, 355364.
  • Turner A. J., Belyaev N. D. and Nalivaeva N. N. (2011) Mediator: the missing link in amyloid precursor protein nuclear signalling. EMBO Rep. 12, 180181.
  • Valdenaire O., Rohrbacher E. and Mattei M. G. (1995) Organization of the gene encoding the human endothelin-converting enzyme (ECE-1). J. Biol. Chem. 270, 2979429798.
  • Valdenaire O., Lepailleur-Enouf D., Egidy G., Thouard A., Barret A., Vranckx R., Tougard C. and Michel J. B. (1999) A fourth isoform of endothelin-converting enzyme (ECE-1) is generated from an additional promoter molecular cloning and characterization. Eur. J. Biochem. 264, 341349.
  • Van Nostrand W. E. and Porter M. (1999) Plasmin cleavage of the amyloid β-protein: alteration of secondary structure and stimulation of tissue plasminogen activator activity. Biochemistry 38, 1157011576.
  • Vardy E. R., Rice P. J., Bowie P. C., Holmes J. D., Catto A. J. and Hooper N. M. (2009) Plasma angiotensin-converting enzyme in Alzheimer’s disease. J. Alzheimers Dis. 16, 609618.
  • Vardy E. R., Brown K., Stopford C. L., Thompson J. C., Richardson A. M., Neary D., Kalsheker N., Morgan K., Mann D. M. and Snowden J. S. (2011) Cognitive phenotypes in Alzheimer’s disease and genetic variants in ACE and IDE. Neurobiol. Aging Published Online doi: 10.1016/j.neurobiolaging.2010.11.003.
  • Vaughan D. E. (2010) PAI-1 antagonists: the promise and the peril. Trans. Am. Clin. Climatol. Assoc. 122, 312325.
  • Vázquez M. C., Vargas L. M., Inestrosa N. C. and Alvarez A. R. (2009) c-Abl modulates AICD dependent cellular responses: transcriptional induction and apoptosis. J. Cell. Physiol. 220, 136143.
  • Vepsäläinen S., Hiltunen M., Helisalmi S., Wang J., van Groen T., Tanila H. and Soininen H. (2008) Increased expression of Aβ degrading enzyme IDE in the cortex of transgenic mice with Alzheimer’s disease-like neuropathology. Neurosci. Lett. 438, 216220.
  • Voisin S., Rognan D., Gros C. and Ouimet T. (2004) A three-dimensional model of the neprilysin 2 active site based on the X-ray structure of neprilysin. Identification of residues involved in substrate hydrolysis and inhibitor binding of neprilysin 2. J. Biol. Chem. 279, 4617246181.
  • Waldron E., Isbert S., Kern A., Jaeger S., Martin A. M., Hébert S. S., Behl C., Weggen S., De Strooper B. and Pietrzik C. U. (2008) Increased AICD generation does not result in increased nuclear translocation or activation of target gene transcription. Exp. Cell Res. 314, 24192433.
  • Weeraratna A. T., Kalehua A., Deleon I. et al. (2007) Alterations in immunological and neurological gene expression patterns in Alzheimer’s disease tissues. Exp. Cell Res. 313, 450461.
  • Weller R. O., Yow H. Y., Preston S. D., Mazanti I. and Nicoll J. A. (2002) Cerebrovascular disease is a major factor in the failure of elimination of Aβ from the aging human brain: implications for therapy of Alzheimer’s disease. Ann. N Y Acad. Sci. 977, 162168.
  • White A. R., Du T., Laughton K. M. et al. (2006) Degradation of the Alzheimer disease amyloid β-peptide by metal-dependent up-regulation of metalloprotease activity. J. Biol. Chem. 281, 1767017680.
  • Whyteside A. R. and Turner A. J. (2008) Human neprilysin-2 (NEP2) and NEP display distinct subcellular localisations and substrate preferences. FEBS Lett. 582, 23822386.
  • Wiltfang J., Esselmann H., Cupers P. et al. (2001) Elevation of β-amyloid peptide 2-42 in sporadic and familial Alzheimer’s disease and its generation in PS1 knockout cells. J. Biol. Chem. 276, 4264542657.
  • Xu X., Zhou H. and Boyer T. G. (2011) Mediator is a transducer of amyloid-precursor-protein-dependent nuclear signalling. EMBO Rep. 12, 216222.
  • Yamin R., Bagchi S., Hildebrant R., Scaloni A., Widom R. L. and Abraham C. R. (2007) Acyl peptide hydrolase, a serine proteinase isolated from conditioned medium of neuroblastoma cells, degrades the amyloid-β peptide. J. Neurochem. 100, 458467.
  • Yamin R., Zhao C., O’Connor P. B., McKee A. C. and Abraham C. R. (2009) Acyl peptide hydrolase degrades monomeric and oligomeric amyloid-β peptide. Mol. Neurodegener. 4, 33.
  • Yan P., Hu X., Song H. et al. (2006) Matrix metalloproteinase-9 degrades amyloid-β fibrils in vitro and compact plaques in situ. J. Biol. Chem. 281, 2456624574.
  • Yin K. J., Cirrito J. R., Yan P. et al. (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-β peptide catabolism. J. Neurosci. 26, 1093910948.
  • Zhang X. Z., Li X. J. and Zhang H. Y. (2010) Valproic acid as a promising agent to combat Alzheimer’s disease. Brain Res. Bull. 81, 36.
  • Zhao J., Li L. and Leissring M. A. (2009) Insulin-degrading enzyme is exported via an unconventional protein secretion pathway. Mol. Neurodegener. 4, 4.
  • Zou K., Yamaguchi H., Akatsu H. et al. (2007) Angiotensin-converting enzyme converts amyloid β-protein 1-42 (Aβ1-42) to (Aβ1-40), and its inhibition enhances brain Aβ deposition. J. Neurosci. 27, 86288635.
  • Zou K., Maeda T., Watanabe A., Liu J., Liu S., Oba R., Satoh Y., Komano H. and Michikawa M. (2009) Aβ42-to-Aβ40- and angiotensin-converting activities in different domains of angiotensin-converting enzyme. J. Biol. Chem. 284, 3191431920.
  • Zou F., Carrasquillo M. M., Pankratz V. S. et al. (2010) Gene expression levels as endophenotypes in genome-wide association studies of Alzheimer disease. Neurology 74, 480486.
  • Zraika S., Aston-Mourney K., Marek P., Hull R. L., Green P. S., Udayasankar J., Subramanian S. L., Raleigh D. P. and Kahn S. E. (2010) Neprilysin impedes islet amyloid formation by inhibition of fibril formation rather than peptide degradation. J. Biol. Chem. 285, 1817718183.