SEARCH

SEARCH BY CITATION

References

  • Bain J., McLauchlan H., Elliott M. and Cohen P. (2003) The specificities of protein kinase inhibitors: an update. Biochem. J. 371(Pt 1), 199204.
  • Bjorklund T. and Kordower J. H. (2010) Gene therapy for Parkinson’s disease. Mov. Disord. 25, S161S173.
  • von Bohlen und Halbach O. (2005) Modeling neurodegenerative diseases in vivo review. Neurodegener. Dis. 2, 313320.
  • Cass W. A., Peters L. E., Harned M. E. and Seroogy K. B. (2006) Protective by GDNF and other trophic factors against the dopamine-depleting effects of neurotoxic doses of methamphetamine. Ann. N Y Acad. Sci. 1074, 272281.
  • Dunnett S. B. and Björklund A. (1999) Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature 399, A32A39.
  • Eslamboli A., Georgievska B., Ridley R. M., Baker H. F., Muzyczka N., Burger C., Mandel R. J., Annett L. and Kirik D. (2005) Continuous low level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J. Neurosci. 25, 769777.
  • Evans J. R. and Barker R. A. (2008) Neurotrophic factors as a therapeutic target for Parkinson’s disease. Expert. Opin. Ther. Targets 12, 437447.
  • Fountaine T. M., Venda L. L., Warrick N., Christian H. C., Brundin P., Channon K. M. and Wade-Martins R. (2008) The effect of alpha-synuclein knockdown on MPP+ toxicity in models of human neurons. Eur. J. Neurosci. 12, 24592473.
  • Franklin K. B. J. and Paxinos G.. (1997) The Mouse Brain in Stereotaxic Coordinates, pp. 5967. Academic Press, San Diego.
  • Günther I., Hall H., Halldin C., Swahn C. G., Farde L. and Sedvall G. (1997) [125I] beta-CIT-FE and [125I] beta-CIT-FP are superior to [125I] beta-CIT for dopamine transporter visualization: autoradiographic evaluation in the human brain. Nucl. Med. Biol. 24, 629634.
  • Hanke J. H., Gardner J. P., Dow R. L., Changelian P. S., Brissette W. H., Weringer E. J., Pollok B. A. and Connelly P. A. (1996) Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem 271, 695701.
  • Ho Y. S., So K. F. and Chang R. C. (2010) Anti-aging herbal medicine--how and why can they be used in aging-associated neurodegenerative diseases? Ageing Res. Rev 9, 354362.
  • Hong M., Mukhida K. and Mendez I. (2008) GDNF therapy for Parkinson’s disease. Exp. Rev. Neurother 8, 11251139.
  • Jeong E. J., Lee K. Y., Kim S. H., Sung S. H. and Kim Y. C. (2008) Cognitive-enhancing and antioxidant activities of iridoid glycosides from Scrophularia buergeriana in scopolamine-treated mice. Eur. J. Pharmacol. 588, 7884.
  • Kim B. H., Jacoba P. B., Elliott R. L. and Curan D. P. (1986) A general approach to optically active iridoid aglycones The total synthesis of β-ethyl descarbomethoxy- verbenalol ethyl catalpol and (-)specionen. Tetrahedron 43, 5359.
  • Kim S. R., Lee K. Y., Koo K. A., Sung S. H., Lee N. G., Kim J. and Kim Y. C. (2002) Four new neuroprotective iridoid glycosides from Scrophularia buergeriana roots. J. Nat. Prod. 65, 16961699.
  • Kitakawa I., Fukuda Y., Taniyama T. and Yoshikawa M. (1991) Chemical studies on crude drug processing VII. On the constituents of rehmannia radix. (1): absolute stereostructures of rehmaglutins A, B, and D isolated from Chinese Rehmanniae Radix, the dried root of Rehmannia glutinosa Libosch. Chem. Pharm. Bull. 39, 11711176.
  • Knowles P. P., Murray-Rust J., Kjaer S., Scott R. P., Hanrahan S., Santoro M., Ibáñez C. F. and McDonald N. Q. (2006) Structure and chemical inhibition of the RET tyrosine kinase domain. J. Biol. Chem 281, 3357733587.
  • Lau Y. S., Patki G., Das-Panja K., Le W. D. and Ahmad S. O.. (2011) Neuro-protective effects and mechanisms of exercise in a chronic mouse model of Parkinson’s disease with moderate neurodegeneratio. Eur. J. Neurosci. 33, 12641274.
  • Ledda F., Paratcha G., Sandoval-Guzmán T. and Ibáñez C. F. (2007) GDNF and GFRalpha1 promote formation of neuronal synapses by ligand-induced cell adhesion. Nat. Neurosci. 10, 293300.
  • Lewitt P. A. (2008) Levodopa for the treatment of Parkinson’s disease. N. Engl. J. Med. 359, 24682476.
  • Lindholm P., Voutilainen M. H., Laurén J. et al. (2007) Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 448, 7377.
  • Meredith G. E. and Sonsalla P. K. (2008) Animal models of Parkinson’s disease progression. Acta Neuropathol. 15, 385398.
  • Mizuta I., Ohta M., Ohta K., Nishimura M., Mizuta E., Hayashi K. and Kuno S. (2000) Selegiline and desmethylselegiline stimulate NGF, BDNF, and GDNF synthesis in cultured mouse astrocytes. Biochem. Biophys. Res. Commun. 279, 751755.
  • Nagatsu T. and Sawada M. (2007) Biochemistry of postmortem brains in Parkinson’s disease: historical overview and future prospects. J. Neural Transm 72(Suppl.), 113120.
  • Niu Z. R., Wang R. F., Shang M. Y. and Cai S. Q. (2009) A new iridoid glycoside from Scrophularia ningpoensis. Nat. Prod. Res 23, 11811188.
  • Olanow C. W. (2009) Can we achieve neuroprotection with currently available anti-parkinsonian interventions? Neurology 72, S59S64.
  • Olanow C. W. and Kordower J. H. (2009) Modeling Parkinson’s disease. Ann. Neurol. 66, 432436.
  • Oo T. F., Kholodilov N. and Burke R. E. (2003) Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J. Neurosci. 23, 51415148.
  • Oshio H. and Inouye H. (1981) Iridoid glycosides of Rehmannia Glutinosa. Phytochemistry 21, 133138.
  • Parkash V., Lindholm P., Peränen J., Kalkkinen N., Oksanen E., Saarma M., Leppänen V. M. and Goldman A. (2009) The structure of the conserved neurotrophic factors MANF and CDNF explains why they are bifunctional. Protein Eng. Des. Sel 22, 233241.
  • Peterson A. L. and Nutt J. G. (2008) Treatment of Parkinson’s disease with trophic factors. Neurotherapeutics 5, 270280.
  • Petroske E., Meredith G. E., Callen S., Totterdell S. and Lau Y. S. (2001) Mouse model of parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106, 589601.
  • Price R. D., Miline S. A., Sharkey J. and Matsuoka N. (2007) Advances in small molecules promoting neurotrophic function. Phamacol. Therapeut 115, 292306.
  • Rozas G., Lopez-martin E., Guerra M. J. and Labandeira-Garcia J. L. (1998) The overall rod performance test in the MPTP-treated-mouse model of Parkinsonism. J. Neurosci. Methods 83, 165175.
  • Saavedra A., Baltazar G. and Duarte E. P. (2007) Interleukin-1beta mediates GDNF up-regulation upon dopaminergic injury in ventral midbrain cell cultures. Neurobiol. Dis. 25), 92104.
  • Savit J. M., Dawson V. L. and Dawson T. M. (2006) Diagnosis and treatment of Parkinson disease: molecules to medicine. J. Clin. Invest. 116, 17441754.
  • Schapira A. H. and Jenner P. (2011) Etiology and pathogenesis of Parkinson’s disease. Mov. Disord. 26, 10491055.
  • Schinelli S., Zuddas A., Kopin I. J., Barker J. L. and di Porzio. U. (1988) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine metabolism and 1-methyl-4-phenylpyridinium uptake in dissociated cell cultures from the embryonic mesencephalon. J. Neurochem. 50, 19001907.
  • Schintu N., Frau L., Ibba M., Garau A., Carboni E. and Carta A. R. (2009) Progressive dopaminergic degeneration in the chronic MPTP mouse model of Parkinson’s disease. Neurotox. Res 16, 127139.
  • Tatton L., Morley G. M., Chopra R. and Khwaja A. (2003) The Src-selective kinase inhibitor PP1 also inhibits Kit and Bcr-Abl tyrosine kinases. J. Biol. Chem, 278, 48474853.
  • Visanji N. P., Orsi A., Johnston T. H., Howsen P. A., Dixon K., Callizot N., Brotchie J. M. and Rees D. D. (2008) PYM50028, a novel, orally active, nonpeptide neurotrophic factor inducer, prevents and reverses neuronal damage induce by MPP+ in mesensephalic neurons and by MPTP in a mouse model of Parkinson’s disease. FASEB J. 22, 110.
  • Voutilainen M. H., Bäck S., Peränen J., Lindholm P., Raasmaja A., Männistö P. T. and Saarma M. (2011) Chronic infusion of CDNF prevents 6-OHDA-induced deficits in a rat model of Parkinson’s disease. Exp. Neurol. 228, 99108.
  • Weinreb O., Amit T., Sagi Y., Drigues N. and Youdim M. B. (2009) Genomic and proteomic study to survey the mechanism of action of the anti-Parkinson’s disease drug, rasagiline compared with selegiline, in the rat midbrain. J. Neural Transm. 116, 14571472.
  • Xing B., Xin T., Zhao L., Hunter R. L., Chen Y. and Bing G. (2010) Glial cell line-derived neurotrophic factor protects midbrain dopaminergic neurons against lipopolysaccharide neurotoxicity. J. Neuroimmunol. 225, 4351.
  • Xu G., Xiong Z., Yong Y., Wang Z., Ke Z., Xia Z. and Hu Y.. (2010) Catalpol attenuates MPTP induced neuronal degeneration of nigral-striatal dopaminergic pathway in mice through elevating glial cell derived neurotrophic factor in striatum. Neuroscience 167, 174184.
  • Yang X., Mertens B., Lehtonen E. et al. (2009) Reversible neurochemical changes mediated by delayed intrastriatal glial cell line-derived neurotrophic factor gene delivery in a partial Parkinson’s disease rat model. J. Gene Med 11, 899912.
  • Zhang Y., Xia Z., Hu Y., Orsi A. and Rees D. (2008) Role of glial cell derived neurotrophic factor in the protective effect of smilagenin on rat mesencephalic dopaminergic neurons damaged by MPP+. FEBS Lett. 582, 956960.