SEARCH

SEARCH BY CITATION

References

  • Araujo I. M., Verdasca M. J., Leal E. C., Bahr B. A., Ambrosio A. F., Carvalho A. P. and Carvalho C. M. (2004) Early calpain-mediated proteolysis following AMPA receptor activation compromises neuronal survival in cultured hippocampal neurons. J. Neurochem. 91, 13221331.
  • Araujo I. M., Carreira B. P., Carvalho C. M. and Carvalho A. P. (2010) Calpains and delayed calcium deregulation in excitotoxicity. Neurochem. Res. 35, 19661969.
  • Babcock D. F., Herrington J., Goodwin P. C., Park Y. B. and Hille B. (1997) Mitochondrial participation in the intracellular Ca2+ network. J. Cell Biol. 136, 833844.
  • Bano D., Young K. W., Guerin C. J., Lefeuvre R., Rothwell N. J., Naldini L., Rizzuto R., Carafoli E. and Nicotera P. (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120, 275285.
  • Benke T. A., Jones O. T., Collingridge G. L. and Angelides K. J. (1993) N-Methyl-D-aspartate receptors are clustered and immobilized on dendrites of living cortical neurons. Proc. Natl Acad. Sci. USA 90, 78197823.
  • Bermudez-Rattoni F., Introini-Collison I. B. and McGaugh J. L. (1991) Reversible inactivation of the insular cortex by tetrodotoxin produces retrograde and anterograde amnesia for inhibitory avoidance and spatial learning. Proc. Natl Acad. Sci. USA 88, 53795382.
  • Bevers M. B. and Neumar R. W. (2008) Mechanistic role of calpains in postischemic neurodegeneration. J. Cereb. Blood Flow Metab. 28, 655673.
  • Bi X., Rong Y., Chen J., Dang S., Wang Z. and Baudry M. (1998) Calpain-mediated regulation of NMDA receptor structure and function. Brain Res. 790, 245253.
  • Boiko T., Rasband M. N., Levinson S. R., Caldwell J. H., Mandel G., Trimmer J. S. and Matthews G. (2001) Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron 30, 91104.
  • Carbonell W. S., Maris D. O., McCall T. and Grady M. S. (1998) Adaptation of the fluid percussion injury model to the mouse. J. Neurotrauma 15, 217229.
  • Catterall W. A. (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 1325.
  • Christie J. M. and Jahr C. E. (2008) Dendritic NMDA receptors activate axonal calcium channels. Neuron 60, 298307.
  • Cochilla A. J. and Alford S. (1999) NMDA receptor-mediated control of presynaptic calcium and neurotransmitter release. J. Neurosci. 19, 193205.
  • DeRidder M. N., Simon M. J., Siman R., Auberson Y. P., Raghupathi R. and Meaney D. F. (2006) Traumatic mechanical injury to the hippocampus in vitro causes regional caspase-3 and calpain activation that is influenced by NMDA receptor subunit composition. Neurobiol. Dis. 22, 165176.
  • Faden A. I., Demediuk P., Panter S. S. and Vink R. (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244, 798800.
  • Fineman I., Hovda D. A., Smith M., Yoshino A. and Becker D. P. (1993) Concussive brain injury is associated with a prolonged accumulation of calcium: a 45Ca autoradiographic study. Brain Res. 624, 94102.
  • Garcia M., Bondada V. and Geddes J. W. (2005) Mitochondrial localization of mu-calpain. Biochem. Biophys. Res. Commun. 338, 12411247.
  • Geddes D. M., Cargill 2nd R. S. and LaPlaca M. C. (2003) Mechanical stretch to neurons results in a strain rate and magnitude-dependent increase in plasma membrane permeability. J. Neurotrauma 20, 10391049.
  • Geddes-Klein D. M., Schiffman K. B. and Meaney D. F. (2006a) Mechanisms and consequences of neuronal stretch injury in vitro differ with the model of trauma. J. Neurotrauma 23, 193204.
  • Geddes-Klein D. M., Serbest G., Mesfin M. N., Cohen A. S. and Meaney D. F. (2006b) Pharmacologically induced calcium oscillations protect neurons from increases in cytosolic calcium after trauma. J. Neurochem. 97, 462474.
  • Goforth P. B., Ren J., Schwartz B. S. and Satin L. S. (2011) Excitatory synaptic transmission and network activity are depressed following mechanical injury in cortical neurons. J. Neurophysiol. 105, 23502363.
  • Golshani P., Warren R. A. and Jones E. G. (1998) Progression of change in NMDA, non-NMDA, and metabotropic glutamate receptor function at the developing corticothalamic synapse. J. Neurophysiol. 80, 143154.
  • Harders A., Kakarieka A. and Braakman R. (1996) Traumatic subarachnoid hemorrhage and its treatment with nimodipine. German tSAH Study Group. J. Neurosurg. 85, 8289.
  • Hardingham G. E. (2009) Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem. Soc. Trans. 37, 11471160.
  • Iwata A., Stys P. K., Wolf J. A., Chen X.-H., Taylor A. G., Meaney D. F. and Smith D. H. (2004) Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J. Neurosci. 24, 46054613.
  • Jette N., Coderre E., Nikolaeva M. A., Enright P. D., Iwata A., Smith D. H., Jiang Q. and Stys P. K. (2006) Spatiotemporal distribution of spectrin breakdown products induced by anoxia in adult rat optic nerve in vitro. J. Cereb. Blood Flow Metab. 26, 777786.
  • Kampfl A., Posmantur R., Nixon R., Grynspan F., Zhao X., Liu S. J., Newcomb J. K., Clifton G. L. and Hayes R. L. (1996) mu-calpain activation and calpain-mediated cytoskeletal proteolysis following traumatic brain injury. J. Neurochem. 67, 15751583.
  • Kampfl A., Posmantur R. M., Zhao X., Schmutzhard E., Clifton G. L. and Hayes R. L. (1997) Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy: implications for pathology and therapy: a review and update. J. Neurotrauma 14, 121134.
  • Kilinc D., Gallo G. and Barbee K. A. (2009) Mechanical membrane injury induces axonal beading through localized activation of calpain. Exp. Neurol. 219, 553561.
  • LaPlaca M. C., Simon C. M., Prado G. R. and Cullen D. K. (2007) CNS injury biomechanics and experimental models. Prog. Brain Res. 161, 1326.
  • Lusardi T. A., Rangan J., Sun D., Smith D. H. and Meaney D. F. (2004) A device to study the initiation and propagation of calcium transients in cultured neurons after mechanical stretch. Ann. Biomed. Eng. 32, 15461558.
  • Nguyen T. H., Paul S., Xu Y., Gurd J. W. and Lombroso P. J. (1999) Calcium-dependent cleavage of striatal enriched tyrosine phosphatase (STEP). J. Neurochem. 73, 19952001.
  • O’Connor W. T., Smyth A. and Gilchrist M. D. (2011) Animal models of traumatic brain injury: a critical evaluation. Pharmacol. Ther. 130, 106113.
  • Okiyama K., Smith D. H., Gennarelli T. A., Simon R. P., Leach M. and McIntosh T. K. (1995) The sodium channel blocker and glutamate release inhibitor BW1003C87 and magnesium attenuate regional cerebral edema following experimental brain injury in the rat. J. Neurochem. 64, 802809.
  • Papadia S. and Hardingham G. E. (2007) The dichotomy of NMDA receptor signaling. Neuroscientist 13, 572579.
  • Peng T. I. and Greenamyre J. T. (1998) Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors. Mol. Pharmacol. 53, 974980.
  • Petralia R. S. and Wenthold R. J. (1992) Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J. Comp. Neurol. 318, 329354.
  • Prakriya M. and Mennerick S. (2000) Selective depression of low-release probability excitatory synapses by sodium channel blockers. Neuron 26, 671682.
  • Rasband M. N., Peles E., Trimmer J. S., Levinson S. R., Lux S. E. and Shrager P. (1999) Dependence of nodal sodium channel clustering on paranodal axoglial contact in the developing CNS. J. Neurosci. 19, 75167528.
  • von Reyn C. R., Spaethling J. M., Mesfin M. N., Ma M., Neumar R. W., Smith D. H., Siman R. and Meaney D. F. (2009) Calpain mediates proteolysis of the voltage-gated sodium channel alpha-subunit. J. Neurosci. 29, 1035010356.
  • Roberts-Lewis J. M. and Siman R. (1993) Spectrin proteolysis in the hippocampus: a biochemical marker for neuronal injury and neuroprotection. Ann. N. Y. Acad. Sci. 679, 7886.
  • Roberts-Lewis J. M., Savage M. J., Marcy V. R., Pinsker L. R. and Siman R. (1994) Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain. J. Neurosci. 14, 39343944.
  • Saatman K. E., Bozyczko-Coyne D., Marcy V., Siman R. and McIntosh T. K. (1996) Prolonged calpain-mediated spectrin breakdown occurs regionally following experimental brain injury in the rat. J. Neuropathol. Exp. Neurol. 55, 850860.
  • Saatman K. E., Bareyre F. M., Grady M. S. and McIntosh T. K. (2001) Acute cytoskeletal alterations and cell death induced by experimental brain injury are attenuated by magnesium treatment and exacerbated by magnesium deficiency. J. Neuropathol. Exp. Neurol. 60, 183194.
  • Saatman K. E., Abai B., Grosvenor A., Vorwerk C. K., Smith D. H. and Meaney D. F. (2003) Traumatic axonal injury results in biphasic calpain activation and retrograde transport impairment in mice. J. Cereb. Blood Flow Metab. 23, 3442.
  • Saatman K. E., Duhaime A.-C., Bullock R., Maas A. I. R., Valadka A., Manley G. T. and Members WSTaAP (2008) Classification of traumatic brain injury for targeted therapies. J. Neurotrauma 25, 719738.
  • Saatman K. E., Creed J. and Raghupathi R. (2010) Calpain as a Therapeutic Target in Traumatic Brain Injury. NURT 7, 3142.
  • Seubert P., Lee K. and Lynch G. (1989) Ischemia triggers NMDA receptor-linked cytoskeletal proteolysis in hippocampus. Brain Res. 492, 366370.
  • Siman R. and Noszek J. C. (1988) Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1, 279287.
  • Smith D. H., Perri B. R., Raghupathi R., Saatman K. E. and McIntosh T. K. (1997) Remacemide hydrochloride reduces cortical lesion volume following brain trauma in the rat. Neurosci. Lett. 231, 135138.
  • Smith D. H., Wolf J. A., Lusardi T. A., Lee V. M. and Meaney D. F. (1999) High tolerance and delayed elastic response of cultured axons to dynamic stretch injury. J. Neurosci. 19, 42634269.
  • Soriano F. X., Papadia S., Hofmann F., Hardingham N. R., Bading H. and Hardingham G. E. (2006) Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability. J. Neurosci. 26, 45094518.
  • Spaethling J. M., Geddes-Klein D. M., Miller W. J., von Reyn C. R., Singh P., Mesfin M., Bernstein S. J. and Meaney D. F. (2007) Linking impact to cellular and molecular sequelae of CNS injury: modeling in vivo complexity with in vitro simplicity. Prog. Brain Res. 161, 2739.
  • Spaethling J. M., Klein D. M., Singh P. and Meaney D. F. (2008) Calcium-permeable AMPA receptors appear in cortical neurons after traumatic mechanical injury and contribute to neuronal fate. J. Neurotrauma 25, 12071216.
  • Staal J. A., Dickson T. C., Gasperini R., Liu Y., Foa L. and Vickers J. C. (2010) Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. J. Neurochem. 112, 11471155.
  • Sun F. Y. and Faden A. I. (1995) Neuroprotective effects of 619C89, a use-dependent sodium channel blocker, in rat traumatic brain injury. Brain Res. 673, 133140.
  • Tang-Schomer M. D., Patel A. R., Baas P. W. and Smith D. H. (2010) Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J 24, 14011410.
  • Vanderklish P., Bednarski E. and Lynch G. (1996) Translational suppression of calpain blocks long-term potentiation. Learn Mem 3, 209217.
  • Vosler P. S., Brennan C. S. and Chen J. (2008) Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol. Neurobiol. 38, 78100.
  • Weber J. T., Rzigalinski B. A., Willoughby K. A., Moore S. F. and Ellis E. F. (1999) Alterations in calcium-mediated signal transduction after traumatic injury of cortical neurons. Cell Calcium 26, 289299.
  • Westenbroek R. E., Merrick D. K. and Catterall W. A. (1989) Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons. Neuron 3, 695704.
  • Wolf J. A., Stys P. K., Lusardi T., Meaney D. and Smith D. H. (2001) Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J. Neurosci. 21, 19231930.
  • Xu J., Kurup P., Zhang Y., Goebel-Goody S. M., Wu P. H., Hawasli A. H., Baum M. L., Bibb J. A. and Lombroso P. J. (2009) Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J. Neurosci. 29, 93309343.
  • Yuen E. Y., Gu Z. and Yan Z. (2007) Calpain regulation of AMPA receptor channels in cortical pyramidal neurons. J. Physiol. 580, 241254.
  • Zhang L., Rzigalinski B. A., Ellis E. F. and Satin L. S. (1996) Reduction of voltage-dependent Mg2+ blockade of NMDA current in mechanically injured neurons. Science 274, 19211923.