SEARCH

SEARCH BY CITATION

References

  • Barranger J. A. and Ginns E. I. (1989) The Metabolic Basis of Inherited Disease. McGraw-Hill Information Services Company, New York.
  • Burnstein R. M., Foltynie T., He X., Menon D. K., Svendsen C. N. and Caldwell M. A. (2004) Differentiation and migration of long term expanded human neural progenitors in a partial lesion model of Parkinson’s disease. Int. J. Biochem. Cell Biol. 36, 702713.
  • Choi J. H., Stubblefield B., Cookson M. R., Goldin E., Velayati A., Tayebi N. and Sidransky E. (2011) Aggregation of alpha-synuclein in brain samples from subjects with glucocerebrosidase mutations. Mol. Genet. Metab. 104, 185188.
  • Chu Y. and Kordower J. H. (2007) Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson’s disease? Neurobiol. Dis. 25, 134149.
  • Chu Y., Dodiya H., Aebischer P., Olanow C. W. and Kordower J. H. (2009) Alterations in lysosomal and proteasomal markers in Parkinson’s disease: relationship to alpha-synuclein inclusions. Neurobiol. Dis. 35, 385398.
  • Collier T. J., Kanaan N. M. and Kordower J. H. (2011) Ageing as a primary risk factor for Parkinson’s disease: evidence from studies of non-human primates. Nat. Rev. 12, 359366.
  • Cooper A. A., Gitler A. D., Cashikar A. et al. (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313, 324328.
  • Cuervo A. M., Stefanis L., Fredenburg R., Lansbury P. T. and Sulzer D. (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305, 12921295.
  • Cullen V., Lindfors M., Ng J. et al. (2009) Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo. Mol. Brain 2, 5.
  • Cullen V., Sardi S. P., Ng J. et al. (2011) Acid beta-glucosidase mutants linked to gaucher disease, parkinson disease, and lewy body dementia alter alpha-synuclein processing. Ann. Neurol. 69, 940953.
  • Dehay B., Bove J., Rodriguez-Muela N., Perier C., Recasens A., Boya P. and Vila M. (2010) Pathogenic lysosomal depletion in Parkinson’s disease. J. Neurosci. 30, 1253512544.
  • Eskelinen E. L. (2006) Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol. Aspects Med. 27, 495502.
  • Gibb W. R. and Lees A. J. (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 51, 745752.
  • Ginns E. I., Brady R. O., Pirruccello S., Moore C., Sorrell S., Furbish F. S., Murray G. J., Tager J. and Barranger J. A. (1982) Mutations of glucocerebrosidase: discrimination of neurologic and non-neurologic phenotypes of Gaucher disease. Proc. Natl Acad. Sci. USA 79, 56075610.
  • Gitler A. D., Chesi A., Geddie M. L. et al. (2009) Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat. Genet. 41, 308315.
  • Goker-Alpan O., Schiffmann R., LaMarca M. E., Nussbaum R. L., McInerney-Leo A. and Sidransky E. (2004) Parkinsonism among Gaucher disease carriers. J. Med. Genet. 41, 937940.
  • Goker-Alpan O., Giasson B. I., Eblan M. J., Nguyen J., Hurtig H. I., Lee V. M., Trojanowski J. Q. and Sidransky E. (2006) Glucocerebrosidase mutations are an important risk factor for Lewy body disorders. Neurology 67, 908910.
  • Goker-Alpan O., Lopez G., Vithayathil J., Davis J., Hallett M. and Sidransky E. (2008) The spectrum of parkinsonian manifestations associated with glucocerebrosidase mutations. Arch. Neurol. 65, 13531357.
  • Goker-Alpan O., Stubblefield B. K., Giasson B. I. and Sidransky E. (2010) Glucocerebrosidase is present in alpha-synuclein inclusions in Lewy body disorders. Acta Neuropathol. 120, 641649.
  • Helenius A. and Aebi M. (2001) Intracellular functions of N-linked glycans. Science 291, 23642369.
  • Hoozemans J. J., van Haastert E. S., Eikelenboom P., de Vos R. A., Rozemuller J. M. and Scheper W. (2007) Activation of the unfolded protein response in Parkinson’s disease. Biochem. Biophys. Res. Commun., 354(70), 7711.
  • Khanna R., Benjamin E. R., Pellegrino L. et al. (2010) The pharmacological chaperone isofagomine increases the activity of the Gaucher disease L444P mutant form of beta-glucosidase. FEBS J. 277, 16181638.
  • Kundra R. and Kornfeld S. (1999) Asparagine-linked oligosaccharides protect Lamp-1 and Lamp-2 from intracellular proteolysis. J. Biol. Chem. 274, 3103931046.
  • Lippa C. F., Duda J. E., Grossman M. et al. (2007) DLB and PDD boundary issues: diagnosis, treatment, molecular pathology, and biomarkers. Neurology 68, 812819.
  • Manning-Bog A. B., Schule B. and Langston J. W. (2009) Alpha-synuclein-glucocerebrosidase interactions in pharmacological Gaucher models: a biological link between Gaucher disease and parkinsonism. Neurotoxicology 30, 11271132.
  • Marshall J., McEachern K. A., Chuang W. L. et al. (2010) Improved management of lysosomal glucosylceramide levels in a mouse model of type 1 Gaucher disease using enzyme and substrate reduction therapy. J. Inherit. Metab. Dis. 33, 281289.
  • Marugan J. J., Zheng W., Motabar O. et al. (2011) Evaluation of quinazoline analogues as glucocerebrosidase inhibitors with chaperone activity. J. Med. Chem. 54, 10331058.
  • Mata I. F., Samii A., Schneer S. H. et al. (2008) Glucocerebrosidase gene mutations: a risk factor for Lewy body disorders. Arch. Neurol. 65, 379382.
  • Mazzulli J. R., Xu Y. H., Sun Y., Knight A. L., McLean P. J., Caldwell G. A., Sidransky E., Grabowski G. A. and Krainc D. (2011) Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146, 3752.
  • McKeith I. G. (2006) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. J. Alzheimers Dis. 9, 417423.
  • McKeith I. G., Galasko D., Kosaka K. et al. (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47, 11131124.
  • Mu T. W., Fowler D. M. and Kelly J. W. (2008) Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis. PLoS Biol. 6, e26.
  • Neudorfer O., Giladi N., Elstein D., Abrahamov A., Turezkite T., Aghai E., Reches A., Bembi B. and Zimran A. (1996) Occurrence of Parkinson’s syndrome in type I Gaucher disease. QJM 89, 691694.
  • Neumann J., Bras J., Deas E. et al. (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 132, 17831794.
  • Nuss J. E., Choksi K. B., DeFord J. H. and Papaconstantinou J. (2008) Decreased enzyme activities of chaperones PDI and BiP in aged mouse livers. Biochem. Biophys. Res. Commun. 365, 355361.
  • Pentchev P. G., Brady R. O., Blair H. E., Britton D. E. and Sorrell S. H. (1978) Gaucher disease: isolation and comparison of normal and mutant glucocerebrosidase from human spleen tissue. Proc. Natl Acad. Sci. USA 75, 39703973.
  • Qiao L., Hamamichi S., Caldwell K. A. et al. (2008) Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity. Mol. Brain 1, 17.
  • Reczek D., Schwake M., Schroder J. et al. (2007) LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell 131, 770783.
  • Ron I., Rapaport D. and Horowitz M. (2010) Interaction between parkin and mutant glucocerebrosidase variants: a possible link between Parkinson disease and Gaucher disease. Hum. Mol. Genet. 19, 37713781.
  • Sardi S. P., Clarke J., Kinnecom C. et al. (2011) CNS expression of glucocerebrosidase corrects {alpha}-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc. Natl Acad. Sci. USA 108, 1210112106.
  • Satake W., Nakabayashi Y., Mizuta I. et al. (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat. Genet. 41, 13031307.
  • Seto-Salvia N., Pagonabarraga J., Houlden H. et al. (2012) Glucocerebrosidase mutations confer a greater risk of dementia during Parkinson’s disease course. Mov. Disord. 27, 393399.
  • Shachar T., Lo Bianco C., Recchia A., Wiessner C., Raas-Rothschild A. and Futerman A. H. (2011) Lysosomal storage disorders and Parkinson’s disease: Gaucher disease and beyond. Mov. Disord. 26, 15931604.
  • Sidransky E. (2004) Gaucher disease: complexity in a “simple” disorder. Mol. Genet. Metab. 83, 615.
  • Sidransky E., Nalls M. A., Aasly J. O. et al. (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N. Engl. J. Med. 361, 16511661.
  • Simon-Sanchez J., Schulte C., Bras J. M. et al. (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 41, 13081312.
  • Tabas I. and Ron D. (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184190.
  • Takagi Y., Kriehuber E., Imokawa G., Elias P. M. and Holleran W. M. (1999) Beta-glucocerebrosidase activity in mammalian stratum corneum. J. Lipid Res. 40, 861869.
  • Uehara T., Nakamura T., Yao D., Shi Z. Q., Gu Z., Ma Y., Masliah E., Nomura Y. and Lipton S. A. (2006) S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441, 513517.
  • Wang M., Ye R., Barron E. et al. (2010) Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death Differ. 17, 488498.
  • Wei H., Kim S. J., Zhang Z., Tsai P. C., Wisniewski K. E. and Mukherjee A. B. (2008) ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum. Mol. Genet. 17, 469477.
  • Winder-Rhodes S. E., Garcia-Reitbock P., Ban M. et al. (2012) Genetic and pathological links between Parkinson’s disease and the lysosomal disorder Sanfilippo syndrome. Mov. Disord. 27, 312315.
  • Wong K., Sidransky E., Verma A. et al. (2004) Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol. Genet. Metab. 82, 192207.
  • Yasuda Y., Kageyama T., Akamine A., Shibata M., Kominami E., Uchiyama Y. and Yamamoto K. (1999) Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D. J. Biochem. 125, 11371143.