SEARCH

SEARCH BY CITATION

References

  • Bentahir M., Nyabi O., Verhamme J., Tolia A., Horre K., Wiltfang J., Esselmann H. and De Strooper B. (2006) Presenilin clinical mutations can affect γ-secretase activity by different mechanisms. J. Neurochem. 96, 732742.
  • Borchelt D. R., Ratovitski T., van Lare J., Lee M. K., Gonzales V., Jenkins N. A., Copeland N. G., Price D. L. and Sisodia S. S. (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19, 939945.
  • Caccamo A., Oddo S., Sugarman M. C., Akbari Y. and LaFerla F. M. (2005) Age- and region-dependent alterations in Aβ-degrading enzymes: implications for Aβ-induced disorders. Neurobiol. Aging 26, 645654.
  • Fukumoto H., Rosene D. L., Moss M. B., Raju S., Hyman B. T. and Irizarry M. C. (2004) β-secretase activity increases with aging in human, monkey, and mouse brain. Am. J. Pathol. 164, 719725.
  • Funato H., Yoshimura M., Kusui K., Tamaoka A., Ishikawa K., Ohkoshi N., Namekata K., Okeda R. and Ihara Y. (1998) Quantitation of amyloid β-protein (Aβ) in the cortex during aging and in Alzheimer’s disease. Am. J. Pathol. 152, 16331640.
  • Geula C., Wu C. K., Saroff D., Lorenzo A., Yuan M. and Yankner B. A. (1998) Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nat. Med. 4, 827831.
  • Geula C., Nagykery N. and Wu C. K. (2002) Amyloid-β deposits in the cerebral cortex of the aged common marmoset (Callithrix jacchus): incidence and chemical composition. Acta Neuropathol. 103, 4858.
  • Hardy J. and Selkoe D. J. (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353356.
  • Hata S., Fujishige S., Araki Y. et al. (2011) Alternative processing of γ-secretase substrates in common forms of mild cognitive impairment and Alzheimer’s disease: evidence for γ-secretase dysfunction. Ann. Neurol. 69, 10261031.
  • Isoo N., Sato C., Miyashita H., Shinohara M., Takasugi N., Morohashi Y., Tsuji S., Tomita T. and Iwatsubo T. (2007) Aβ42 overproduction associated with structural changes in the catalytic pore of γ-secretase: common effects of Pen-2 N-terminal elongation and fenofibrate. J. Biol. Chem. 282, 1238812396.
  • Iwatsubo T., Odaka A., Suzuki N., Mizusawa H., Nukina N. and Ihara Y. (1994) Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is Aβ42(43). Neuron, 13, 4553.
  • Jorm A. F., Korten A. E. and Henderson A. S. (1987) The prevalence of dementia: a quantitative integration of the literature. Acta Psychiatr. Scand. 76, 465479.
  • Kim J., Basak J. M. and Holtzman D. M. (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63, 287303.
  • Kimura N., Tanemura K., Nakamura S., Takashima A., Ono F., Sakakibara I., Ishii Y., Kyuwa S. and Yoshikawa Y. (2003) Age-related changes of Alzheimer’s disease-associated proteins in cynomolgus monkey brains. Biochem. Biophys. Res. Commun. 310, 303311.
  • Kukar T., Murphy M. P., Eriksen J. L. et al. (2005) Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Aβ42 production. Nat. Med. 11, 545550.
  • de Magalhaes J. P., Costa J. and Church G. M. (2007) An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J. Gerontol. A Biol. Sci. Med. Sci. 62, 149160.
  • Marotti K. R., Whitted B. E., Castle C. K., Polites H. G. and Melchior G. W. (1989) Nucleotide sequence of the cynomolgus monkey apolipoprotein E cDNA. Nucleic Acids Res. 17, 1778.
  • McGowan E., Pickford F., Kim J. et al. (2005) Aβ42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47, 191199.
  • Mestre-Frances N., Keller E., Calenda A., Barelli H., Checler F. and Bons N. (2000) Immunohistochemical analysis of cerebral cortical and vascular lesions in the primate Microcebus murinus reveal distinct amyloid β1-42 and β1-40 immunoreactivity profiles. Neurobiol. Dis. 7, 18.
  • Mitsuishi Y., Hasegawa H., Matsuo A. et al. (2010) Human CRB2 inhibits γ-secretase cleavage of amyloid precursor protein by binding to the presenilin complex. J. Biol. Chem. 285, 1492014931.
  • Morishima-Kawashima M., Oshima N., Ogata H., Yamaguchi H., Yoshimura M., Sugihara S. and Ihara Y. (2000) Effect of apolipoprotein E allele ε4 on the initial phase of amyloid β-protein accumulation in the human brain. Am. J. Pathol. 157, 20932099.
  • Morris J. C., Roe C. M., Xiong C., Fagan A. M., Goate A. M., Holtzman D. M. and Mintun M. A. (2010) APOE predicts amyloid-β but not tau Alzheimer pathology in cognitively normal aging. Ann. Neurol. 67, 122131.
  • Nagahara A. H., Bernot T. and Tuszynski M. H. (2010) Age-related cognitive deficits in rhesus monkeys mirror human deficits on an automated test battery. Neurobiol. Aging 31, 10201031.
  • Nakamura S., Tamaoka A., Sawamura N. et al. (1995) Carboxyl end-specific monoclonal antibodies to amyloid β protein (Aβ) subtypes (Aβ40 and Aβ42(43)) differentiate Aβ in senile plaques and amyloid angiopathy in brains of aged cynomolgus monkeys. Neurosci. Lett. 201, 151154.
  • Placanica L., Tarassishin L., Yang G., Peethumnongsin E., Kim S. H., Zheng H., Sisodia S. S. and Li Y. M. (2009a) Pen2 and presenilin-1 modulate the dynamic equilibrium of presenilin-1 and presenilin-2 γ-secretase complexes. J. Biol. Chem. 284, 29672977.
  • Placanica L., Zhu L. and Li Y. M. (2009b) Gender- and age-dependent γ-secretase activity in mouse brain and its implication in sporadic Alzheimer disease. PLoS ONE 4, e5088.
  • Podlisny M. B., Tolan D. R. and Selkoe D. J. (1991) Homology of the amyloid β protein precursor in monkey and human supports a primate model for β amyloidosis in Alzheimer’s disease. Am. J. Pathol. 138, 14231435.
  • Price J. L., McKeel Jr D. W., Buckles V. D. et al. (2009) Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol. Aging 30, 10261036.
  • Qi-Takahara Y., Morishima-Kawashima M., Tanimura Y. et al. (2005) Longer forms of amyloid β protein: implications for the mechanism of intramembrane cleavage by γ-secretase. J. Neurosci. 25, 436445.
  • Quintero-Monzon O., Martin M. M., Fernandez M. A., Cappello C. A., Krzysiak A. J., Osenkowski P. and Wolfe M. S. (2011) Dissociation between the processivity and total activity of γ-secretase: implications for the mechanism of Alzheimer’s disease-causing presenilin mutations. Biochemistry 50, 90239035.
  • Saito T., Suemoto T., Brouwers N. et al. (2011) Potent amyloidogenicity and pathogenicity of Aβ43. Nat. Neurosci. 14, 10231032.
  • Sani S., Traul D., Klink A., Niaraki N., Gonzalo-Ruiz A., Wu C. K. and Geula C. (2003) Distribution, progression and chemical composition of cortical amyloid-β deposits in aged rhesus monkeys: similarities to the human. Acta Neuropathol. 105, 145156.
  • Serneels L., Van Biervliet J., Craessaerts K. et al. (2009) γ-Secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer’s disease. Science 324, 639642.
  • Storandt M., Mintun M. A., Head D. and Morris J. C. (2009) Cognitive decline and brain volume loss as signatures of cerebral amyloid-β peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Aβ deposition. Arch. Neurol. 66, 14761481.
  • Takami M., Nagashima Y., Sano Y., Ishihara S., Morishima-Kawashima M., Funamoto S. and Ihara Y. (2009) γ-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment. J. Neurosci. 29, 1304213052.
  • Uchida K., Nakayama H. and Goto N. (1991) Pathological studies on cerebral amyloid angiopathy, senile plaques and amyloid deposition in visceral organs in aged dogs. J. Vet. Med. Sci. 53, 10371042.
  • Villemagne V. L., Pike K. E., Chetelat G. et al. (2011) Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann. Neurol. 69, 181192.
  • Wisniewski H. M., Ghetti B. and Terry R. D. (1973) Neuritic (senile) plaques and filamentous changes in aged rhesus monkeys. J. Neuropathol. Exp. Neurol. 32, 566584.
  • Yanagida K., Okochi M., Tagami S. et al. (2009) The 28-amino acid form of an APLP1-derived Aβ-like peptide is a surrogate marker for Aβ42 production in the central nervous system. EMBO Mol. Med. 1, 223235.