SEARCH

SEARCH BY CITATION

References

  • Adibhatla R. M., Hatcher J. F. and Dempsey R. J. (2003) Phospholipase A2, hidroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxid. Redox Signal. 5, 647654.
  • Akbarian S. and Davis R. J. (2010) Keep the ‘phospho’ on MAPK, be happy. Nat. Med. 16, 13281332.
  • Bazan N. G., Palacios-Pelaez R. and Lukiw W. J. (2002) Hypoxia signaling to genes: significance in Alzheimer’s disease. Mol. Neurobiol. 26, 283298.
  • von Bernhardi R. (2007) Glial cell dysregulation: a new perspective on Alzheimer’s disease. Neurotox. Res. 12, 215232.
  • von Bernhardi R. and Eugenín J. (2012) Alzheimer’s Disease: redox Dysregulation as a Common Denominator for Diverse Pathogenic Mechanisms. Antioxid. Redox Signal. 16, 9741031.
  • von Bernhardi R., Ramírez G., Toro R. and Eugenín J. (2007) Pro-inflammatory conditions promote neuronal damage mediated by Amyloid Precursor Protein and decrease its phagocytosis and degradation by microglial cells in culture. Neurobiol. Dis. 26, 153164.
  • von Bernhardi R., Tichauer J. and Eugenín J. (2010) Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders. J. Neurochem. 112, 1099114.
  • Bhat N., Zhang P., Lee J. and Hogan E. (1998) Extracellular signal regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J. Neurosci. 18, 16331641.
  • Blanchette J., Jaramillo M. and Olivier M. (2003) Signalling events involved in interferon-gamma-inducible macrophage nitric oxide generation. Immunology 108, 513522.
  • Block M. L. and Hong J. S. (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76, 7798.
  • Boutros T., Chevet E. and Metrakos P. (2008) Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death and cancer. Pharmacol. Rev. 60, 261310.
  • Calabrese V., Mancuso C., Calvani M., Rizzarelli E., Butterfield D. A. and Giuffrida A. M. (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 8, 766775.
  • Christen Y. (2000) Oxidative stress and Alzheimer’s disease. Am. J. Clin. Nutr. 71, 621629.
  • Chu C. T., Levinthal D. J., Kulich S. M., Chalovich E. M. and DeFranco D. B. (2004) Oxidative neuronal injury. Eur. J. Biochem. 271, 20602066.
  • Crittenden P. L. and Filipov N. M. (2011) Manganese modulation of MAPK pathways: effects on upstream mitogen activated protein kinase kinases (MKKs) and mitogen activated kinase phosphatase-1 (MKP-1) in microglial cells. J. Appl. Toxicol. 31, 110.
  • Dang P. M. C., Morel F., Gougerot-Pocidalo M-A. and El Benna J. (2003) Phosphorylation of the NADPH oxidase component p67PHOX by ERK2 and p38 MAPK: selectivity of phosphorylated sites and existence of an intramolecular regulatory domain in the tetracopeptide-rich region. Biochemistry 42, 45204526.
  • Dell’Albani P., Santangelo R., Torrisi L., Nicolett V. G., de Vellis J. and Guiffrida A. M. (2001) Jak/STAT signaling pathways mediates cytokine-induced iNOS expression in primary astroglial cell cultures. J. Neurosci. Res. 65, 417424.
  • Flores B. and von Bernhardi R.. (2012) Transforming growth factor β1 modulates amyloid β-induced glial activation through the Smad3-dependent induction of MAPK phosphatase-1. J. Alzheimers Dis. DOI: 10.3233/JAD-2012-120721.
  • Gao H. M. and Hong J. S. (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 29, 357365.
  • Ghosh A. K., Yuan W., Mori Y., Chen S. and Varga J. (2001) Antagonistic regulation of type I collagen gene expression by interferon-gamma and transforming growth factor-beta. Integration at the level of p300/CBP transcriptional co activators. J. Biol. Chem. 276, 1104111048.
  • Gough D. J., Levy D. E., Johnstone R. W. and Clarke C. J. (2008) IFNgamma signaling - does it mean JAK-STAT? Cytokine Growth Factor Rev. 19, 383394.
  • Hamby M. E., Hewett J. A. and Hewett S. J. (2006) TGF-beta1 potentiates astrocytic nitric oxide production by expanding the population of astrocytes that express NOS-2. Glia 54, 566577.
  • Hamby M. E., Gragnolati A. R., Hewett S. J. and Hewett J. A. (2008) TGF beta 1 and TNF alpha potentiate nitric oxide production in astrocyte cultures by recruiting distinct subpopulations of cells to express NOS-2. Neurochem. Int. 52, 962971.
  • Herrera-Molina R. and von Bernhardi R. (2005) Transforming growth factor-beta1 produced by hippocampal cell modulates microglial reactivity in culture. Neurobiol. Dis. 19, 229236.
  • Hu S., Sheng W. S., Peterson P. K. and Chao C. C. (1995) Cytokine modulation of murine microglial cell superoxide production. Glia 13, 4550.
  • Huo Y., Rangarajan P., Ling E. A. and Dheen S. T. (2011) Dexamethasone inhibits the Nox-dependent ROS production via suppression of MKP-1-dependent MAPK pathways in activated microglia. BMC Neurosci. 12, 4966.
  • Ishida Y., Kondo T., Takayasu T., Iwakura Y. and Mukaida N. (2004) The essential involvement of cross-talk between IFN-gamma and TGF-beta in the skin wound-healing process. J. Immunol. 172, 18481855.
  • Jang B. C., Lim K. J., Suh M. H., Park J. G. and Suh S. I. (2007) Dexamethasone suppresses interleukin-1 beta-induced human beta-defensin 2 mRNA expression: involvement of p38 MAPK, JNK, MKP-1, and NF-kappaB transcriptional factor in A549 cells. FEMS Immunol. Med. Microbiol. 51, 171184.
  • Kassel O., Sancono A., Kraetzschmar J., Kreft B., Stassen M. and Cato A. C. B. (2001) Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J. 20, 71087116.
  • Katayama T., Sakaguchi E., Komatsu Y., Oguma T., Uehara T. and Minami M. (2010) Sustained activation of ERK signaling in astrocytes is critical for neuronal injury-induced monocytechemoattractant protein-1 production in rat corticostriatal slice cultures. Eur. J. Neurosci. 31, 13591367.
  • King E. M., Holden N. S., Gong W., Rider C. F. and Newton R. (2009) Inhibition of NF-κB-dependent transcription by MKP-1: transcriptional repression by glucocorticoids occurring via p38 MAPK. J. Biol. Chem. 284, 2680326815.
  • Klegeris A., Bissonnette C. J. and McGeer P. L. (2005) Modulation of human microglia and THP-1 cell toxicity by cytokines endogenous to the nervous system. Neurobiol. Aging 26, 673682.
  • Ledeboer A., Brevé J. J. P., Poole S., Tilders F. J. H. and Van Dam A. M. (2000) Interleukin-10, interleukin-4, and transforming growth factor-beta differentially regulate lipopolysaccharide-induced production of pro-inflammatory cytokines and nitric oxide in co-cultures of rat astroglial and microglial cells. Glia 30, 134142.
  • Lee J. H., Woo J. H., Woo S. U., Kim K. S., Park S. M., Joe E. H. and Jou I. (2008) The 15-deoxy-delta 12,14-prostaglandin J2 suppresses monocyte chemoattractant protein-1 expression in IFN-gamma-stimulated astrocytes through induction of MAPK phosphatase-1. J. Immunol. 181, 86428649.
  • Lee J. H., Kim H., Woo J. H., Joe E. H. and Jou I. (2012) 5, 8, 11, 14-eicosatetraynoic acid suppresses CCL2/MCP-1 expression in IFN-γ-stimulated astrocytes by increasing MAPK phosphatase-1 mRNA stability. J. Neuroinflammation 9, 3446.
  • Lieb K., Engels S. and Fiebich B. L. (2003) Inhibition of LPS-induced iNOS and NO synthesis in primary rat microglial cells. Neurochem. Int. 42, 131137.
  • Liu Y., Shepherd E. G. and Nelin L. D. (2007) MAPK phosphatases - regulating the immune response. Nat. Rev. Immunol. 7, 202212.
  • Lyons A., Murphy K. J., Clarke R. and Lynch M. A. (2011) Atorvastatin prevents age-related and amyloid-β-induced microglial activation by blocking interferon-γ release from natural killer cells in the brain. J. Neuroinflammation. 31, 27.
  • Marcus J. S., Karackattu S. L., Fleegal M. A. and Sumners C. (2003) Cytokine-stimulated inducible nitric oxide synthase expression in astroglia: role of ERK mitogen-activated protein kinase and NF-kappaB. Glia 41, 152160.
  • McCartney-Francis N. and Wahl S. M. (2002) Dysregulation of IFN-gamma signaling pathways in the absence of TGF-beta1. J. Immunol. 169, 59415947.
  • Ng Y. K., Yong V. W. and Ling E. A. (1999) Microglial reaction in some CNS nuclei following nerves transection in BALB/c and interferon-gamma gene knockout mice. Neurosci. Lett. 262, 207210.
  • Penkowa M., Giralt M., Carrasco J., Hadberg H. and Hidalgo J. (2000) Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice. Glia 32, 271285.
  • Pfeiffer S., Gorren A. C., Schmidt K., Werner E. R., Hanser B., Bohle D. S. and Mayer B. (1997) Metabolic fate of peroxynitrite in aqueous solution. J. Biol. Chem. 272, 34653470.
  • Platanias L. C. (2005) Mechanisms of type-I- and type-II-interferon-mediated signaling. Nat. Rev. Immunol. 5, 375386.
  • Qian L., Wei S. J., Zhang D., Hu X., Xu Z., Wilson B., El-Benna J., Hong J. S. and Flood P. M. (2008) Potent anti-inflammatory and neuroprotective effects of TGF-beta1 are mediated through the inhibition of ERK and p47phox-Ser345 phosphorylation and translocation in microglia. J. Immunol. 181, 660668.
  • Ramírez G., Rey S. and von Bernhardi R. (2008) Proinflammatory stimuli induce microglial cell- mediated APP- and Aβ- neurotoxicity in hippocampal cultures. J. Alzheimers Dis. 15, 4559.
  • Romero-Sandoval E. A., Horvath R., Landry R. P. and DeLeo J. A. (2009) Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation. Mol. Pain 5, 2539.
  • Rook G. A. (1985) A simple method for the solubilisation of reduced NBT, and its use as a colorimetric assay. J. Immunol. 82, 161167.
  • Saud K., Herrera-Molina R. and von Bernhardi R. (2005) Pro- and anti-inflammatory cytokines regulate the ERK pathways: implication of the timing for the activation of microglial cells. Neurotox. Res. 8, 277287.
  • Schmierer B. and Hill C. S. (2007) TGFβ–SMAD signal transduction: molecular specificity and functional flexibility. Nat. Rev. Mol. Cell Biol. 8, 970982.
  • Sorrentino A., Thakur N., Grimsby S., Marcusson A., von Bulow V., Schuster N., Zhang S., Heldin C. H. and Landström M. (2008) The Type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-ondependent manner. Nat. Cell Biol. 10, 11991207.
  • Takaki H., Minoda Y., Koga K., Takaesu G., Yoshimura A. and Kobayashi T. (2006) TGF-β1 suppresses IFN-γ-induced NO production in macrophages by suppressing STAT1 activation and accelerating iNOS protein degradation. Genes Cells 11, 871882.
  • Thannickal V. J. and Fanburg B. L. (2000) Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, 10051028.
  • Tichauer J., Saud K. and von Bernhardi R. (2007) Modulation by astrocytes of microglial cell-mediated neuroinflammation: effect on the activation of microglial signaling pathways. NeuroImmunoModulation 14, 168174.
  • Ulloa L., Doody J. and Massague J. (1999) Inhibition of transforming growth factor-beta/SMAD signaling by the interferon-gamma/STAT pathway. Nature 397, 710713.
  • Venema R. C., Venema V. J., Eaton D. C. and Marrero M. B. (1998) Angiotensin II-induced tyrosine phosphorylation of signal transducers and activators of transcription 1 is regulated by Janus-activated kinase 2 and Fyn kinases and mitogen-activated protein kinase phosphatase 1. J. Biol. Chem. 273, 3079530800.
  • Wen Z., Zhong Z. and Darnell Jr J. E. (1995) Maximal activation of transcription by STAT1 and STAT3 requires both tyrosine and serine phosphorylation. Cell 82, 241250.
  • Yoshimura A., Wakabayashi Y. and Mori T. (2010) Cellular and molecular basis for the regulation of inflammation by TGF-beta. J. Biochem. 147, 781792.