SEARCH

SEARCH BY CITATION

References

  • Agnihotri R., Crawford H. C., Haro H., Matrisian L. M., Havrda M. C. and Liaw L. (2001) Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J. Biol. Chem. 276, 2826128267.
  • Alexander C. M., Howard E. W., Bissell M. J. and Werb Z. (1996) Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transgene. J. Cell Biol. 135, 16691677.
  • Arza B., Hoylaerts M. F., Felez J., Collen D. and Lijnen H. R. (2000) Prostromelysin-1 (proMMP-3) stimulates plasminogen activation by tissue-type plasminogen activator. Eur. J. Biochem. 267, 63786384.
  • Baig S., Kehoe P. G. and Love S. (2008) MMP-2, -3 and -9 levels and activity are not related to Abeta load in the frontal cortex in Alzheimer's disease. Neuropathol. Appl. Neurobiol. 34, 205215.
  • Bajor M., Michaluk P., Gulyassy P., Kekesi A. K., Juhasz G. and Kaczmarek L. (2012) Synaptic cell adhesion molecule-2 and collapsin response mediator protein-2 are novel members of the matrix metalloproteinase-9 degradome. J. Neurochem. 122, 775788.
  • Barkho B. Z., Munoz A. E., Li X., Li L., Cunningham L. A. and Zhao X. (2008) Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells 26, 31393149.
  • Del Bigio M. R. and Jacque C. M. (1995) Localization of proteinase expression in the developing rabbit brain. Brain Res. Dev. Brain Res. 86, 345347.
  • Bini A., Itoh Y., Kudryk B. J. and Nagase H. (1996) Degradation of cross-linked fibrin by matrix metalloproteinase 3 (stromelysin 1): hydrolysis of the gamma Gly 404-Ala 405 peptide bond. Biochemistry 35, 1305613063.
  • Bullard K. M., Lund L., Mudgett J. S., Mellin T. N., Hunt T. K., Murphy B., Ronan J., Werb Z. and Banda M. J. (1999) Impaired wound contraction in stromelysin-1-deficient mice. Ann. Surg. 230, 260265.
  • Candelario-Jalil E., Thompson J., Taheri S., Grossetete M., Adair J. C., Edmonds E., Prestopnik J., Wills J. and Rosenberg G. A. (2011) Matrix metalloproteinases are associated with increased blood-brain barrier opening in vascular cognitive impairment. Stroke 42, 13451350.
  • Cao J., Rehemtulla A., Pavlaki M., Kozarekar P. and Chiarelli C. (2005) Furin directly cleaves proMMP-2 in the trans-Golgi network resulting in a nonfunctioning proteinase. J. Biol. Chem. 280, 1097410980.
  • Carulli D., Rhodes K. E., Brown D. J., Bonnert T. P., Pollack S. J., Oliver K., Strata P. and Fawcett J. W. (2006) Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J. Comp. Neurol. 494, 559577.
  • Cauwe B. and Opdenakker G. (2010) Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol. 45, 351423.
  • Cauwe B., Martens E., Proost P. and Opdenakker G. (2009) Multidimensional degradomics identifies systemic autoantigens and intracellular matrix proteins as novel gelatinase B/MMP-9 substrates. Integr. Biol. (Camb) 1, 404426.
  • Chakraborti S., Mandal M., Das S., Mandal A. and Chakraborti T. (2003) Regulation of matrix metalloproteinases: an overview. Mol. Cell. Biochem. 253, 269285.
  • Chandler S., Coates R., Gearing A., Lury J., Wells G. and Bone E. (1995) Matrix metalloproteinases degrade myelin basic protein. Neurosci. Lett. 201, 223226.
  • Choi D. H., Kim E. M., Son H. J., Joh T. H., Kim Y. S., Kim D., Flint Beal M. and Hwang O. (2008) A novel intracellular role of matrix metalloproteinase-3 during apoptosis of dopaminergic cells. J. Neurochem. 106, 405415.
  • Choi D. H., Hwang O., Lee K. H., Lee J., Beal M. F. and Kim Y. S. (2011a) DJ-1 cleavage by matrix metalloproteinase 3 mediates oxidative stress-induced dopaminergic cell death. Antioxid. Redox Signal. 14, 21372150.
  • Choi D. H., Kim Y. J., Kim Y. G., Joh T. H., Beal M. F. and Kim Y. S. (2011b) Role of matrix metalloproteinase 3-mediated alpha-synuclein cleavage in dopaminergic cell death. J. Biol. Chem. 286, 1416814177.
  • Clark I. M., Swingler T. E., Sampieri C. L. and Edwards D. R. (2008) The regulation of matrix metalloproteinases and their inhibitors. Int. J. Biochem. Cell Biol. 40, 13621378.
  • Conant K. and Gottschall P. E. (2005) Matrix Metalloproteinases in the Central Nervous System. London, Imperial College Press.
  • Conant K., Wang Y., Szklarczyk A., Dudak A., Mattson M. P. and Lim S. T. (2010) Matrix metalloproteinase-dependent shedding of intercellular adhesion molecule-5 occurs with long-term potentiation. Neuroscience 166, 508521.
  • Cunningham L. A., Wetzel M. and Rosenberg G. A. (2005) Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia, 50, 329339.
  • Deb S. and Gottschall P. E. (1996) Increased production of matrix metalloproteinases in enriched astrocyte and mixed hippocampal cultures treated with beta-amyloid peptides. J. Neurochem. 66, 16411647.
  • Delany A. M. and Brinckerhoff C. E. (1992) Post-transcriptional regulation of collagenase and stromelysin gene expression by epidermal growth factor and dexamethasone in cultured human fibroblasts. J. Cell. Biochem. 50, 400410.
  • Deller T., Haas C. A. and Frotscher M. (2001) Sprouting in the hippocampus after entorhinal cortex lesion is layer- specific but not translaminar: which molecules may be involved? Restor. Neurol. Neurosci. 19, 159167.
  • Demestre M., Wells G. M., Miller K. M., Smith K. J., Hughes R. A., Gearing A. J. and Gregson N. A. (2004) Characterisation of matrix metalloproteinases and the effects of a broad-spectrum inhibitor (BB-1101) in peripheral nerve regeneration. Neuroscience 124, 767779.
  • Dityatev A. and Schachner M. (2003) Extracellular matrix molecules and synaptic plasticity. Nat. Rev. Neurosci. 4, 456468.
  • D'Souza C. A. and Moscarello M. A. (2006) Differences in susceptibility of MBP charge isomers to digestion by stromelysin-1 (MMP-3) and release of an immunodominant epitope. Neurochem. Res. 31, 10451054.
  • D'Souza C. A., Mak B. and Moscarello M. A. (2002) The up-regulation of stromelysin-1 (MMP-3) in a spontaneously demyelinating transgenic mouse precedes onset of disease. J. Biol. Chem. 277, 1358913596.
  • Dubois-Dalcq M. and Murray K. (2000) Why are growth factors important in oligodendrocyte physiology? Pathol. Biol. (Paris) 48, 8086.
  • Durigova M., Nagase H., Mort J. S. and Roughley P. J. (2011) MMPs are less efficient than ADAMTS5 in cleaving aggrecan core protein. Matrix Biol. 30, 145153.
  • Eguchi T., Kubota S., Kawata K. et al. (2008) Novel transcription-factor-like function of human matrix metalloproteinase 3 regulating the CTGF/CCN2 gene. Mol. Cell. Biol. 28, 23912413.
  • Ethell I. M. and Ethell D. W. (2007) Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets. J. Neurosci. Res. 85, 28132823.
  • Falo M. C., Fillmore H. L., Reeves T. M. and Phillips L. L. (2006) Matrix metalloproteinase-3 expression profile differentiates adaptive and maladaptive synaptic plasticity induced by traumatic brain injury. J. Neurosci. Res. 84, 768781.
  • Felderhoff-Mueser U., Taylor D. L., Greenwood K., Kozma M., Stibenz D., Joashi U. C., Edwards A. D. and Mehmet H. (2000) Fas/CD95/APO-1 can function as a death receptor for neuronal cells in vitro and in vivo and is upregulated following cerebral hypoxic-ischemic injury to the developing rat brain. Brain Pathol. 10, 1729.
  • Fowlkes J. L., Enghild J. J., Suzuki K. and Nagase H. (1994) Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. J. Biol. Chem. 269, 2574225746.
  • Fowlkes J. L., Serra D. M., Bunn R. C., Thrailkill K. M., Enghild J. J. and Nagase H. (2004) Regulation of insulin-like growth factor (IGF)-I action by matrix metalloproteinase-3 involves selective disruption of IGF-I/IGF-binding protein-3 complexes. Endocrinology 145, 620626.
  • Fuchs M., Hermannstadter C., Specht K. et al. (2005) Effect of tumor-associated mutant E-cadherin variants with defects in exons 8 or 9 on matrix metalloproteinase 3. J. Cell. Physiol. 202, 805813.
  • Galloway W. A., Murphy G., Sandy J. D., Gavrilovic J., Cawston T. E. and Reynolds J. J. (1983) Purification and characterization of a rabbit bone metalloproteinase that degrades proteoglycan and other connective-tissue components. Biochem. J. 209, 741752.
  • Gearing A. J., Beckett P., Christodoulou M. et al. (1995) Matrix metalloproteinases and processing of pro-TNF-alpha. J. Leukoc. Biol. 57, 774777.
  • Gonthier B., Nasarre C., Roth L., Perraut M., Thomasset N., Roussel G., Aunis D. and Bagnard D. (2007) Functional interaction between matrix metalloproteinase-3 and semaphorin-3C during cortical axonal growth and guidance. Cereb. Cortex 17, 17121721.
  • Green M. J., Gough A. K., Devlin J., Smith J., Astin P., Taylor D. and Emery P. (2003) Serum MMP-3 and MMP-1 and progression of joint damage in early rheumatoid arthritis. Rheumatology (Oxford) 42, 8388.
  • Gurney K. J., Estrada E. Y. and Rosenberg G. A. (2006) Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol. Dis. 23, 8796.
  • Hampton T. G., Stasko M. R., Kale A., Amende I. and Costa A. C. (2004) Gait dynamics in trisomic mice: quantitative neurological traits of Down syndrome. Physiol. Behav. 82, 381389.
  • Van Hove I., Verslegers M., Buyens T., Delorme N., Lemmens K., Stroobants S., Gantois I., D'Hooge R. and Moons L. (2012) An aberrant cerebellar development in mice lacking matrix metalloproteinase-3. Mol. Neurobiol. 45, 1729.
  • Howell M. D. and Gottschall P. E. (2012) Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment. Neuroscience 217, 618.
  • Imai K., Kusakabe M., Sakakura T., Nakanishi I. and Okada Y. (1994) Susceptibility of tenascin to degradation by matrix metalloproteinases and serine proteinases. FEBS Lett. 352, 216218.
  • Imai K., Shikata H. and Okada Y. (1995) Degradation of vitronectin by matrix metalloproteinases-1, -2, -3, -7 and -9. FEBS Lett. 369, 249251.
  • Imai K., Hiramatsu A., Fukushima D., Pierschbacher M. D. and Okada Y. (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. Biochem. J. 322(Pt 3), 809814.
  • Kean M. J., Williams K. C., Skalski M., Myers D., Burtnik A., Foster D. and Coppolino M. G. (2009) VAMP3, syntaxin-13 and SNAP23 are involved in secretion of matrix metalloproteinases, degradation of the extracellular matrix and cell invasion. J. Cell Sci. 122, 40894098.
  • Kim E. M. and Hwang O. (2011) Role of matrix metalloproteinase-3 in neurodegeneration. J. Neurochem. 116, 2232.
  • Kim H. J., Fillmore H. L., Reeves T. M. and Phillips L. L. (2005) Elevation of hippocampal MMP-3 expression and activity during trauma-induced synaptogenesis. Exp. Neurol. 192, 6072.
  • Kim Y. S., Choi D. H., Block M. L. et al. (2007) A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J. 21, 179187.
  • Kim E. M., Shin E. J., Choi J. H., Son H. J., Park I. S., Joh T. H. and Hwang O. (2010) Matrix metalloproteinase-3 is increased and participates in neuronal apoptotic signaling downstream of caspase-12 during endoplasmic reticulum stress. J. Biol. Chem. 285, 1644416452.
  • Klein T. and Bischoff R. (2011) Physiology and pathophysiology of matrix metalloproteases. Amino Acids 41, 271290.
  • Kokaia Z. and Lindvall O. (2003) Neurogenesis after ischaemic brain insults. Curr. Opin. Neurobiol. 13, 127132.
  • Kotter M. R., Li W. W., Zhao C. and Franklin R. J. (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J. Neurosci. 26, 328332.
  • Kouwenhoven M., Ozenci V., Gomes A., Yarilin D., Giedraitis V., Press R. and Link H. (2001) Multiple sclerosis: elevated expression of matrix metalloproteinases in blood monocytes. J. Autoimmun. 16, 463470.
  • Larsen P. H., Wells J. E., Stallcup W. B., Opdenakker G. and Yong V. W. (2003) Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. J. Neurosci. 23, 1112711135.
  • Larsen P. H., DaSilva A. G., Conant K. and Yong V. W. (2006) Myelin formation during development of the CNS is delayed in matrix metalloproteinase-9 and -12 null mice. J. Neurosci. 26, 22072214.
  • Lee R., Kermani P., Teng K. K. and Hempstead B. L. (2001) Regulation of cell survival by secreted proneurotrophins. Science 294, 19451948.
  • Lee S., Jilani S. M., Nikolova G. V., Carpizo D. and Iruela-Arispe M. L. (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol. 169, 681691.
  • Li F., Strange R., Friis R. R., Djonov V., Altermatt H. J., Saurer S., Niemann H. and Andres A. C. (1994) Expression of stromelysin-1 and TIMP-1 in the involuting mammary gland and in early invasive tumors of the mouse. Int. J. Cancer 59, 560568.
  • Li R. B., Guo X. C., Liang H. X., Wang F. Y. and Zhu B. L. (2009) Study on changes of MMP-3 expression after brain contusion in rats. Leg. Med. (Tokyo) 11(Suppl. 1), S176179.
  • Lijnen H. R., Ugwu F., Bini A. and Collen D. (1998) Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry 37, 46994702.
  • Lijnen H. R., Arza B., Van Hoef B., Collen D. and Declerck P. J. (2000) Inactivation of plasminogen activator inhibitor-1 by specific proteolysis with stromelysin-1 (MMP-3). J. Biol. Chem. 275, 3764537650.
  • Lijnen H. R., Van Hoef B. and Collen D. (2001) Inactivation of the serpin alpha(2)-antiplasmin by stromelysin-1. Biochim. Biophys. Acta 1547, 206213.
  • Lindholm D., Wootz H. and Korhonen L. (2006) ER stress and neurodegenerative diseases. Cell Death Differ. 13, 385392.
  • Machida C. M., Rodland K. D., Matrisian L., Magun B. E. and Ciment G. (1989) NGF induction of the gene encoding the protease transin accompanies neuronal differentiation in PC12 cells. Neuron 2, 15871596.
  • Maeda A. and Sobel R. A. (1996) Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 55, 300309.
  • Mast A. E., Enghild J. J., Nagase H., Suzuki K., Pizzo S. V. and Salvesen G. (1991) Kinetics and physiologic relevance of the inactivation of alpha 1-proteinase inhibitor, alpha 1-antichymotrypsin, and antithrombin III by matrix metalloproteinases-1 (tissue collagenase), -2 (72-kDa gelatinase/type IV collagenase), and -3 (stromelysin). J. Biol. Chem. 266, 1581015816.
  • Matsuno H., Yudoh K., Watanabe Y., Nakazawa F., Aono H. and Kimura T. (2001) Stromelysin-1 (MMP-3) in synovial fluid of patients with rheumatoid arthritis has potential to cleave membrane bound Fas ligand. J. Rheumatol. 28, 2228.
  • McCawley L. J. and Matrisian L. M. (2001) Matrix metalloproteinases: they're not just for matrix anymore!. Curr. Opin. Cell Biol. 13, 534540.
  • McQuibban G. A., Butler G. S., Gong J. H., Bendall L., Power C., Clark-Lewis I. and Overall C. M. (2001) Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J. Biol. Chem. 276, 4350343508.
  • McQuibban G. A., Gong J. H., Wong J. P., Wallace J. L., Clark-Lewis I. and Overall, C. M. (2002) Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100, 11601167.
  • Meighan S. E., Meighan P. C., Choudhury P., Davis C. J., Olson M. L., Zornes P. A., Wright J. W. and Harding J. W. (2006) Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J. Neurochem. 96, 12271241.
  • Miyata S., Nakatani Y., Hayashi N. and Nakashima T. (2005) Matrix-degrading enzymes tissue plasminogen activator and matrix metalloprotease-3 in the hypothalamo-neurohypophysial system. Brain Res. 1058, 19.
  • Mudgett J. S., Hutchinson N. I., Chartrain N. A. et al. (1998) Susceptibility of stromelysin 1-deficient mice to collagen-induced arthritis and cartilage destruction. Arthritis Rheum. 41, 110121.
  • Muir E. M., Adcock K. H., Morgenstern D. A., Clayton R., von Stillfried N., Rhodes K., Ellis C., Fawcett J. W. and Rogers J. H. (2002) Matrix metalloproteases and their inhibitors are produced by overlapping populations of activated astrocytes. Brain Res. Mol. Brain Res. 100, 103117.
  • Nagase H., Enghild J. J., Suzuki K. and Salvesen G. (1990) Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl)mercuric acetate. Biochemistry 29, 57835789.
  • Nagase H., Visse R. and Murphy G. (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69, 562573.
  • Nagy V., Bozdagi O., Matynia A. et al. (2006) Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J. Neurosci. 26, 19231934.
  • Nordstrom L. A., Lochner J., Yeung W. and Ciment G. (1995) The metalloproteinase stromelysin-1 (transin) mediates PC12 cell growth cone invasiveness through basal laminae. Mol. Cell. Neurosci. 6, 5668.
  • Ogata Y., Enghild J. J. and Nagase H. (1992) Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J. Biol. Chem. 267, 35813584.
  • Oh L. Y., Larsen P. H., Krekoski C. A., Edwards D. R., Donovan F., Werb Z. and Yong V. W. (1999) Matrix metalloproteinase-9/gelatinase B is required for process outgrowth by oligodendrocytes. J. Neurosci. 19, 84648475.
  • Oh J., Takahashi R., Kondo S. et al. (2001) The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell, 107, 789800.
  • Okada Y., Nagase H. and Harris E. D. Jr (1986) A multi-substrate metalloproteinase from rheumatoid synovial cells. Trans. Assoc. Am. Physicians 99, 143153.
  • Olson M. L., Meighan P. C., Brown T. E., Asay A. L., Benoist C. C., Harding J. W. and Wright J. W. (2008) Hippocampal MMP-3 elevation is associated with passive avoidance conditioning. Regul. Pept. 146, 1925.
  • Pagenstecher A., Stalder A. K., Kincaid C. L., Shapiro S. D. and Campbell I. L. (1998) Differential expression of matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase genes in the mouse central nervous system in normal and inflammatory states. Am. J. Pathol. 152, 729741.
  • Park S. M., Hwang I. K., Kim S. Y., Lee S. J., Park K. S. and Lee S. T. (2006) Characterization of plasma gelsolin as a substrate for matrix metalloproteinases. Proteomics 6, 11921199.
  • Pauly T., Ratliff M., Pietrowski E., Neugebauer R., Schlicksupp A., Kirsch J. and Kuhse J. (2008) Activity-dependent shedding of the NMDA receptor glycine binding site by matrix metalloproteinase 3: a PUTATIVE mechanism of postsynaptic plasticity. PLoS ONE 3, e2681.
  • Pei D. and Weiss S. J. (1996) Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J. Biol. Chem. 271, 91359140.
  • Pizzi M. A. and Crowe M. J. (2007) Matrix metalloproteinases and proteoglycans in axonal regeneration. Exp. Neurol. 204, 496511.
  • Qiu J., Whalen M. J., Lowenstein P., Fiskum G., Fahy B., Darwish R., Aarabi B., Yuan J. and Moskowitz M. A. (2002) Upregulation of the Fas receptor death-inducing signaling complex after traumatic brain injury in mice and humans. J. Neurosci. 22, 35043511.
  • Rosenberg G. A. (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 8, 205216.
  • Rosenberg G. A., Cunningham L. A., Wallace J., Alexander S., Estrada E. Y., Grossetete M., Razhagi A., Miller K. and Gearing A. (2001) Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res. 893, 104112.
  • Sage E. H., Reed M., Funk S. E., Truong T., Steadele M., Puolakkainen P., Maurice D. H. and Bassuk J. A. (2003) Cleavage of the matricellular protein SPARC by matrix metalloproteinase 3 produces polypeptides that influence angiogenesis. J. Biol. Chem. 278, 3784937857.
  • Sakamoto W., Fujie K., Kaga M., Handa H., Gotoh K., Nishihira J., Kishi J., Hayakawa T. and Okada Y. (1996) Degradation of T-kininogen by cathepsin D and matrix metalloproteinases. Immunopharmacology 32, 7375.
  • Schonbeck U., Mach F. and Libby P. (1998) Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J. Immunol. 161, 33403346.
  • Shin E. J., Kim E. M., Lee J. A., Rhim H. and Hwang O. (2012) Matrix metalloproteinase-3 is activated by HtrA2/Omi in dopaminergic cells: relevance to Parkinson's disease. Neurochem. Int. 60, 249256.
  • Shubayev V. I. and Myers R. R. (2004) Matrix metalloproteinase-9 promotes nerve growth factor-induced neurite elongation but not new sprout formation in vitro. J. Neurosci. Res. 77, 229239.
  • Silver J. and Miller J. H. (2004) Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146156.
  • Si-Tayeb K., Monvoisin A., Mazzocco C. et al. (2006) Matrix metalloproteinase 3 is present in the cell nucleus and is involved in apoptosis. Am. J. Pathol. 169, 13901401.
  • Skuljec J., Gudi V., Ulrich R. et al. (2011) Matrix metalloproteinases and their tissue inhibitors in cuprizone-induced demyelination and remyelination of brain white and gray matter. J. Neuropathol. Exp. Neurol. 70, 758769.
  • Sole S., Petegnief V., Gorina R., Chamorro A. and Planas A. M. (2004) Activation of matrix metalloproteinase-3 and agrin cleavage in cerebral ischemia/reperfusion. J. Neuropathol. Exp. Neurol. 63, 338349.
  • Stack M. S., Emberts C. G. and Gray R. D. (1991) Application of N-carboxyalkyl peptides to the inhibition and affinity purification of the porcine matrix metalloproteinases collagenase, gelatinase, and stromelysin. Arch. Biochem. Biophys. 287, 240249.
  • Steward O. (1989) Reorganization of neuronal connections following CNS trauma: principles and experimental paradigms. J. Neurotrauma 6, 99152.
  • Stix B., Kahne T., Sletten K., Raynes J., Roessner A. and Rocken C. (2001) Proteolysis of AA amyloid fibril proteins by matrix metalloproteinases-1, -2, and -3. Am. J. Pathol. 159, 561570.
  • Sung J. Y., Park S. M., Lee C. H. et al. (2005) Proteolytic cleavage of extracellular secreted {alpha}-synuclein via matrix metalloproteinases. J. Biol. Chem. 280, 2521625224.
  • Suzuki M., Raab G., Moses M. A., Fernandez C. A. and Klagsbrun M. (1997) Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. J. Biol. Chem. 272, 3173031737.
  • Teng H. K., Teng K. K., Lee R. et al. (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci. 25, 54555463.
  • Tian L., Stefanidakis M., Ning L. et al. (2007) Activation of NMDA receptors promotes dendritic spine development through MMP-mediated ICAM-5 cleavage. J. Cell Biol. 178, 687700.
  • Traub L. M. (2009) Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol. 10, 583596.
  • Ugwu F., Van Hoef B., Bini A., Collen D. and Lijnen H. R. (1998) Proteolytic cleavage of urokinase-type plasminogen activator by stromelysin-1 (MMP-3). Biochemistry 37, 72317236.
  • Ulrich R., Gerhauser I., Seeliger F., Baumgartner W. and Alldinger S. (2005) Matrix metalloproteinases and their inhibitors in the developing mouse brain and spinal cord: a reverse transcription quantitative polymerase chain reaction study. Dev. Neurosci. 27, 408418.
  • Ulrich R., Baumgartner W., Gerhauser I., Seeliger F., Haist V., Deschl U. and Alldinger S. (2006) MMP-12, MMP-3, and TIMP-1 are markedly upregulated in chronic demyelinating theiler murine encephalomyelitis. J. Neuropathol. Exp. Neurol. 65, 783793.
  • Vaillant C., Didier-Bazes M., Hutter A., Belin M. F. and Thomasset N. (1999) Spatiotemporal expression patterns of metalloproteinases and their inhibitors in the postnatal developing rat cerebellum. J. Neurosci. 19, 49945004.
  • Vaillant C., Meissirel C., Mutin M., Belin M. F., Lund L. R. and Thomasset N. (2003) MMP-9 deficiency affects axonal outgrowth, migration, and apoptosis in the developing cerebellum. Mol. Cell. Neurosci. 24, 395408.
  • VanSaun M., Herrera A. A. and Werle M. J. (2003) Structural alterations at the neuromuscular junctions of matrix metalloproteinase 3 null mutant mice. J. Neurocytol. 32, 11291142.
  • VanSaun M., Humburg B. C., Arnett M. G., Pence M. and Werle M. J. (2007) Activation of Matrix Metalloproteinase-3 is altered at the frog neuromuscular junction following changes in synaptic activity. Dev. Neurobiol. 67, 14881497.
  • Vincelette J., Xu Y., Zhang L. N., Schaefer C. J., Vergona R., Sullivan M. E., Hampton T. G. and Wang Y. X. (2007) Gait analysis in a murine model of collagen-induced arthritis. Arthritis Res. Ther. 9, R123.
  • Wang X. B., Bozdagi O., Nikitczuk J. S., Zhai Z. W., Zhou Q. and Huntley G. W. (2008) Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc. Natl Acad. Sci. USA 105, 1952019525.
  • Van Wart H. E. and Birkedal-Hansen H. (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl Acad. Sci. USA 87, 55785582.
  • Werle M. J. and VanSaun M. (2003) Activity dependent removal of agrin from synaptic basal lamina by matrix metalloproteinase 3. J. Neurocytol. 32, 905913.
  • Wetzel M., Rosenberg G. A. and Cunningham L. A. (2003) Tissue inhibitor of metalloproteinases-3 and matrix metalloproteinase-3 regulate neuronal sensitivity to doxorubicin-induced apoptosis. Eur. J. Neurosci. 18, 10501060.
  • Wetzel M., Li L., Harms K. M., Roitbak T., Ventura P. B., Rosenberg G. A., Khokha R. and Cunningham L. A. (2008) Tissue inhibitor of metalloproteinases-3 facilitates Fas-mediated neuronal cell death following mild ischemia. Cell Death Differ. 15, 143151.
  • Wheal H. V., Chen Y., Mitchell J., Schachner M., Maerz W., Wieland H., Van Rossum D. and Kirsch J. (1998) Molecular mechanisms that underlie structural and functional changes at the postsynaptic membrane during synaptic plasticity. Prog. Neurobiol. 55, 611640.
  • Whitelock J. M., Murdoch A. D., Iozzo R. V. and Underwood P. A. (1996) The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J. Biol. Chem. 271, 1007910086.
  • Wright J. W., Meighan S. E., Murphy E. S., Holtfreter K. L., Davis C. J., Olson M. L., Benoist C. C., Muhunthan K. and Harding J. W. (2006) Habituation of the head-shake response induces changes in brain matrix metalloproteinases-3 (MMP-3) and -9. Behav. Brain Res. 174, 7885.
  • Yong V. W. (2005) Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat. Rev. Neurosci. 6, 931944.
  • Yong V. W. (2010) Inflammation in neurological disorders: a help or a hindrance? Neuroscientist 16, 408420.
  • Yoshiyama Y., Asahina M. and Hattori T. (2000) Selective distribution of matrix metalloproteinase-3 (MMP-3) in Alzheimer's disease brain. Acta Neuropathol. 99, 9195.