SEARCH

SEARCH BY CITATION

References

  • Adamczyk A., Kazmierczak A. and Strosznajder J. B. (2006) Alpha-synuclein and its neurotoxic fragment inhibit dopamine uptake into rat striatal synaptosomes. Relationship to nitric oxide. Neurochem. Int. 49, 407412.
  • Anderson D. G., Mariappan S. V., Buettner G. R. and Doorn J. A. (2011) Oxidation of 3,4-dihydroxyphenylacetaldehyde, a toxic dopaminergic metabolite, to a semiquinone radical and an ortho-quinone. J. Biol. Chem. 286, 2697826986.
  • Blaschko H. (1952) Amine oxidase and amine metabolism. Pharmacol. Rev. 4, 415458.
  • Bronstein J., Carvey P., Chen H. et al. (2009) Meeting report: consensus statement-Parkinson's disease and the environment: collaborative on health and the environment and Parkinson's Action Network (CHE PAN) conference 26–28 June 2007. Environ. Health Perspect. 117, 117121.
  • Burke W. J., Kumar V. B., Pandey N. et al. (2008) Aggregation of alpha-synuclein by DOPAL, the monoamine oxidase metabolite of dopamine. Acta Neuropathol. 115, 193203.
  • Caudle W. M., Richardson J. R., Wang M. Z. et al. (2007) Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J. Neurosci. 27, 81388148.
  • Chen L., Ding Y., Cagniard B., Van Laar A. D., Mortimer A., Chi W., Hastings T. G., Kang U. J. and Zhuang X. (2008) Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J. Neurosci. 28, 425433.
  • Dukes A. A., Korwek K. M. and Hastings T. G. (2005) The effect of endogenous dopamine in rotenone-induced toxicity in PC12 cells. Antioxid. Redox Signal. 7, 630638.
  • Edwards T. L., Scott W. K., Almonte C. et al. (2010) Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann. Hum. Genet. 74, 97109.
  • Ehringer H. and Hornykiewicz O. (1960) Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Wien. Klin. Wochenschr. 38, 12361239.
  • Eisenhofer G., Hovevey-Sion D., Kopin I. J., Miletich R., Kirk K. L., Finn R. and Goldstein D. S. (1989) Neuronal uptake and metabolism of 2- and 6-fluorodopamine: false neurotransmitters for positron emission tomographic imaging of sympathetically innervated tissues. J. Pharmacol. Exp. Ther. 248, 419427.
  • Eisenhofer G., Kopin I. J. and Goldstein D. S. (2004a) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol. Rev. 56, 331349.
  • Eisenhofer G., Kopin I. J. and Goldstein D. S. (2004b) Leaky catecholamine stores: undue waste or a stress response coping mechanism? Ann. N.Y. Acad. Sci. 1018, 224230.
  • Fumagalli F., Gainetdinov R. R., Wang Y. M., Valenzano K. J., Miller G. W. and Caron M. G. (1999) Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J. Neurosci. 19, 24242431.
  • Goldstein D. S., Sullivan P., Holmes C., Kopin I. J., Basile M. J. and Mash D. C. (2011) Catechols in post-mortem brain of patients with Parkinson disease. Eur. J. Neurol. 18, 703710.
  • Graham D. G. (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol. 14, 633643.
  • Guillot T. S., Shepherd K. R., Richardson J. R., Wang M. Z., Li Y., Emson P. C. and Miller G. W. (2008) Reduced vesicular storage of dopamine exacerbates methamphetamine-induced neurodegeneration and astrogliosis. J. Neurochem. 106, 22052217.
  • Guo J. T., Chen A. Q., Kong Q., Zhu H., Ma C. M. and Qin C. (2008) Inhibition of vesicular monoamine transporter-2 activity in alpha-synuclein stably transfected SH-SY5Y cells. Cell. Mol. Neurobiol. 28, 3547.
  • Halliday G. M., Li Y. W., Blumbergs P. C., Joh T. H., Cotton R. G., Howe P. R., Blessing W. W. and Geffen L. B. (1990) Neuropathology of immunohistochemically identified brainstem neurons in Parkinson's disease. Ann. Neurol. 27, 373385.
  • Holmes C., Eisenhofer G. and Goldstein D. S. (1994) Improved assay for plasma dihydroxyphenylacetic acid and other catechols using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B Biomed. Appl. 653, 131138.
  • Ito S., Nakaso K., Imamura K., Takeshima T. and Nakashima K. (2010) Endogenous catecholamine enhances the dysfunction of unfolded protein response and alpha-synuclein oligomerization in PC12 cells overexpressing human alpha-synuclein. Neurosci. Res. 66, 124130.
  • Jana S., Sinha M., Chanda D., Roy T., Banerjee K., Munshi S., Patro B. S. and Chakrabarti S. (2011) Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: implications in dopamine cytotoxicity and pathogenesis of Parkinson's disease. Biochimi. et Biophysica. Acta. 1812, 663673.
  • Jinsmaa Y., Florang V. R., Rees J. N., Anderson D. G., Strack S. and Doorn J. A. (2009) Products of oxidative stress inhibit aldehyde oxidation and reduction pathways in dopamine catabolism yielding elevated levels of a reactive intermediate. Chem. Res. Toxicol. 22, 835841.
  • Kazantsev A. G. and Kolchinsky A. M. (2008) Central role of alpha-synuclein oligomers in neurodegeneration in Parkinson disease. Arch. Neurol. 65, 15771581.
  • Kish S. J., Shannak K. S., Rajput A. H., Gilbert J. J. and Hornykiewicz O. (1984) Cerebellar norepinephrine in patients with Parkinson's disease and control subjects. Arch. Neurol. 41, 612614.
  • Kopin I. J. (1985) Catecholamine metabolism: basic aspects and clinical significance. Pharmacol. Rev. 37, 333364.
  • Lamensdorf I., Eisenhofer G., Harvey-White J., Hayakawa Y., Kirk K. and Kopin I. J. (2000) Metabolic stress in PC12 cells induces the formation of the endogenous dopaminergic neurotoxin, 3,4-dihydroxyphenylacetaldehyde. J. Neurosci. Res. 60, 552558.
  • Lee M., Hyun D., Halliwell B. and Jenner P. (2001) Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult. J. Neurochem. 76, 9981009.
  • Legros H., Dingeval M. G., Janin F., Costentin J. and Bonnet J. J. (2004a) Toxicity of a treatment associating dopamine and disulfiram for catecholaminergic neuroblastoma SH-SY5Y cells: relationships with 3,4-dihydroxyphenylacetaldehyde formation. Neurotoxicology 25, 365375.
  • Legros H., Janin F., Dourmap N., Bonnet J. J. and Costentin J. (2004b) Semi-chronic increase in striatal level of 3,4-dihydroxyphenylacetaldehyde does not result in alteration of nigrostriatal dopaminergic neurones. J. Neurosci. Res. 75, 429435.
  • Li S. W., Lin T. S., Minteer S. and Burke W. J. (2001) 3,4-Dihydroxyphenylacetaldehyde and hydrogen peroxide generate a hydroxyl radical: possible role in Parkinson's disease pathogenesis. Brain Res. Mol. Brain Res. 93, 17.
  • Mosharov E. V., Larsen K. E., Kanter E. et al. (2009) Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62, 218229.
  • Nasstrom T., Fagerqvist T., Barbu M. et al. (2011) The lipid peroxidation products 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote the formation of alpha-synuclein oligomers with distinct biochemical, morphological, and functional properties. Free Rad. Biol. Med. 50, 428437.
  • Panneton W. M., Kumar V. B., Gan Q., Burke W. J. and Galvin J. E. (2010) The neurotoxicity of DOPAL: behavioral and stereological evidence for its role in Parkinson disease pathogenesis. PLoS ONE 5, e15251.
  • Park S. S., Schulz E. M. and Lee D. (2007) Disruption of dopamine homeostasis underlies selective neurodegeneration mediated by alpha-synuclein. Eur. J. Neurosci. 26, 31043112.
  • Polymeropoulos M. H., Lavedan C., Leroy E. et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 20452047.
  • Rees J. N., Florang V. R., Eckert L. L. and Doorn J. A. (2009) Protein reactivity of 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite, is dependent on both the aldehyde and the catechol. Chem. Res. Toxicol. 22, 12561263.
  • Sai Y., Wu Q., Le W., Ye F., Li Y. and Dong Z. (2008) Rotenone-induced PC12 cell toxicity is caused by oxidative stress resulting from altered dopamine metabolism. Toxicol. In Vitro 22, 14611468.
  • Satake W., Nakabayashi Y., Mizuta I. et al. (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat. Genet. 41, 13031307.
  • Sherer T. B., Kim J. H., Betarbet R. and Greenamyre J. T. (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp. Neurol. 179, 916.
  • Shinkai T., Zhang L., Mathias S. A. and Roth G. S. (1997) Dopamine induces apoptosis in cultured rat striatal neurons; possible mechanism of D2-dopamine receptor neuron loss during aging. J. Neurosci. Res. 47, 393399.
  • Singleton A. B., Farrer M., Johnson J. et al. (2003) alpha-Synuclein locus triplication causes Parkinson's disease. Science 302, 841.
  • Spillantini M. G., Schmidt M. L., Lee V. M., Trojanowski J. Q., Jakes R. and Goedert M. (1997) Alpha-synuclein in Lewy bodies. Nature 388, 839840.
  • Watabe M. and Nakaki T. (2008) Mitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells. Mol. Pharmacol. 74, 933940.
  • Wey M., Fernandez E., Martinez P. A., Sullivan P., Goldstein D. S. and Strong R. (2012) Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson's disease. PLoS ONE 7, e31522.
  • Winner B., Jappelli R., Maji S. K. et al. (2011) In vivo demonstration that {alpha}-synuclein oligomers are toxic. Proc. Natl Acad. Sci. USA 108, 41944199.