SEARCH

SEARCH BY CITATION

References

  • Albuquerque E. X., Pereira E. F. R., Alkondon M. and Rogers S. W. (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol. Rev. 89, 73120.
  • Aldea M., Castillo M., Mulet J., Sala S., Criado M. and Sala F. (2010) Role of the extracellular transmembrane domain interface in gating and pharmacology of a heteromeric neuronal nicotinic receptor. J. Neurochem. 113, 10361045.
  • Bouzat C. (2012) New insights into the structural bases of activation of Cys-loop receptors. J. Physiol. Paris 106, 2333.
  • Campos-Caro A., Smillie F. I., Domínguez del Toro E. et al. (1997) Neuronal nicotinic acetylcholine receptors on bovine chromaffin cells: cloning expression and genomic organization of receptor subunits. J. Neurochem. 68, 488497.
  • Castelán F., Castillo M., Mulet J., Sala S., Sala F., Domínguez del Toro E. and Criado M. (2008) Molecular characterization and localization of RIC-3 protein, an effector of nicotinic acetylcholine receptor expression. J. Neurochem. 105, 617627.
  • Chavez-Noriega L. E., Crona J. H., Washburn M. S., Urrutia A., Elliott K. J. and Johnson E. C. (1997) Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors hα2β2, hα2β4, hα3β2, hα3β4, hα4β2, hα4β4 and hα7 expressed in Xenopus oocytes. J. Pharmacol. Exp. Ther. 280, 346356.
  • Couturier S., Bertrand D., Matter J.-M., Hernandez M. C., Bertrand S., Millar N., Valera S., Barkas T. and Ballivet M. (1990) A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo- oligomeric channel blocked by α-BTX. Neuron 5, 847856.
  • Criado M., Domínguez del Toro E., Carrasco-Serrano C., Smillie F. I., Juíz J. M., Viniegra S. and Ballesta J. J. (1997) Differential expression of α-bungarotoxin-sensitive neuronal nicotinic receptors in adrenergic chromaffin cells: a role for transcription factor Egr-1. J. Neurosci. 17, 65546564.
  • Criado M., Mulet J., Gerber S., Sala S. and Sala F. (2011) A small cytoplasmic region adjacent to the fourth transmembrane segment of the α7 nicotinic receptor is essential for its biogenesis. FEBS Lett. 585, 24772480.
  • Cuevas J. and Berg D. K. (1998) Mammalian nicotinic receptors with α7 subunits that slowly desensitize and rapidly recover from α-bungarotoxin blockade. J. Neurosci. 24, 1033510344.
  • Einhauer A. and Jungbauer A. (2001) The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J. Biochem. Biophys. Methods 49, 455465.
  • Ellison M., Gao F., Wang H.-L., Sine S. M., McIntosh J. M. and Olivera B. M. (2004) α-Conotoxins ImI and ImII target distinct regions of the human α7 nicotinic acetylcholine receptor and distinguish human nicotinic receptor subtypes. Biochemistry 43, 1601916026.
  • Fuentealba J., Olivares R., Alés E., Tapia L., Rojo J., Arroyo G., Aldea M., Criado M., Gandía L. and García A. G. (2004) A choline-evoked [Ca2+]c signal causes catecholamine release and hyperpolarization of chromaffin cells. FASEB J. 18, 14681470.
  • Gandía L., Casado L. F., López M. G. and García A. G. (1991) Separation of two pathways for calcium entry into chromaffin cells. Br. J. Pharmacol. 103, 10731078.
  • Garcia-Guzman M., Sala F., Sala S., Campos-Caro A. and Criado M. (1994) Role of two acetylcholine receptor subunit domains in homomer formation and intersubunit recognition, as revealed by α3 and α7 subunit chimeras. Biochemistry 33, 1519815203.
  • García-Guzmán M., Sala F., Sala S., Campos-Caro A., Stühmer W., Gutiérrez L. M. and Criado M. (1995) α-Bungarotoxin-sensitive nicotinic receptors on bovine chromaffin cells: molecular cloning, functional expression and alternative splicing of the α7 subunit. Eur. J. Neurosci. 7, 647655.
  • Gotti C., Zoli M. and Clementi F. (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol. Sci. 27, 482491.
  • Houlihan L. M., Slater Y., Guerra D. L., Peng J.-H., Kuo Y.-P., Lukas R. J., Cassels B. K. and Bermudez I. (2001) Activity of cytisine and its brominated isosteres on recombinant human α7, α4β2 and α4β4 nicotinic acetylcholine receptors. J. Neurochem. 78, 10291043.
  • Johnson D. S., Martinez J., Elgoyhen A. B., Heinemann S. F. and McIntosh J. M. (1995) α-Conotoxin ImI exhibits subtype-specific nicotinic acetylcholine receptor blockade: preferential inhibition of homomeric α7 and α9 receptors. Mol. Pharmacol. 48, 194199.
  • Kageyama H. and Guidotti A. (1984) Effect of alpha-bungarotoxin and etorphine on acetylcholine-evoked release of endogenous and radiolabeled catecholamines from primary culture of adrenal chromaffin cells. J. Neurosci. Methods 10, 916.
  • Khiroug S. S., Harkness P. C., Lamb P. W., Sudweeks S. N., Khiroug L., Millar N. S. and Yakel J. L. (2002) Rat nicotinic ACh receptor α7 and β2 subunits co-assemble to form functional heteromeric nicotinic receptor channels. J. Physiol. 540, 425434.
  • Krieg P. A. and Melton D. A. (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12, 70577070.
  • Levandoski M. M., Lin Y., Moise L., McLaughlin J. T., Cooper E. and Hawrot E. (1999) Chimeric analysis of a neuronal nicotinic acetylcholine receptor reveals amino acids conferring sensitivity to alpha-bungarotoxin. J. Biol. Chem. 274, 2611326119.
  • Liu Q., Huang Y., Xue F. et al. (2009) A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides. J. Neurosci. 29, 918929.
  • López M. G., Montiel C., Herrero C. J. et al. (1998) Unmasking the functions of the chromaffin cell α7 nicotinic receptor by using short pulses of acetylcholine and selective blockers. Proc. Natl Acad. Sci. USA 95, 141841141849.
  • Mazzaferro S., Benallegue N., Carbone A., Gasparri F., Vijayan R., Biggin P. C., Moroni M. and Bermudez I. (2011) Additional acetylcholine (ACh) binding site at α4/α4 interface of (α4β2)2α4 nicotinic receptor influences agonist sensitivity. J. Biol. Chem. 286, 3104331054.
  • Millar N. S. and Harkness C. (2008) Assembly and trafficking of nicotinic acetylcholine receptors. Mol. Membr. Biol. 25, 279292.
  • Murray T. A., Bertrand D., Papke R. L. et al. (2012) α7β2 nAChRs assemble and function, and are activated primarily via their α7-α7 interfaces. Mol. Pharmacol. 81, 175188.
  • Nelson M. E., Wang F., Kuryatov A., Choi C. H., Gerzanich V. and Lindstrom J. (2001) Functional properties of human nicotinic AChRs expressed by IMR-32 neuroblastoma cells resemble those of α3β4 AChRs expressed in permanently transfected HEK cells. J. Gen. Physiol. 118, 563582.
  • Le Novère N. and Changeux J.-P. (2001) The ligand gated ion channel database: an example of a sequence database in neuroscience. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 11211130.
  • Palma E., Maggi L., Barabino B., Eusebi F. and Ballivet M. (1999) Nicotinic acetylcholine receptors assembled from the α7 and β3 subunits. J. Biol. Chem. 274, 1833518340.
  • Parker M. J., Beck A. and Luetje C. W. (1998) Neuronal nicotinic receptor β2 and β4 subunits confer large differences in agonist binding affinity. Mol. Pharmacol. 54, 11321139.
  • Sala F., Mulet J., Valor L. M., Criado M. and Sala S. (2002) Effects of benzothiazepines on human neuronal nicotinic receptors expressed in Xenopus oocytes Br. J. Pharmacol. 136, 183192.
  • Sala F., Nistri A. and Criado M. (2008) Nicotinic acetylcholine receptors of adrenal chromaffin cells. Acta Physiol. (Oxf.) 192, 203212.
  • Schoepfer R., Conroy W. G., Whiting P., Gore M. and Lindstrom J. (1990) Brain alpha-bungarotoxin binding protein cDNAs and Mabs reveal subtypes of this branch of the ligand-gated ion channel superfamily. Neuron 5, 3548.
  • Trifaro J. M. and Lee R. W. (1980) Morphological characteristics and stimulus-secretion coupling in bovine adrenal chromaffin cell cultures. Neuroscience 5, 15331546.
  • Vallés A. S. and Barrantes F. J. (2012) Chaperoning α7 neuronal nicotinic acetylcholine receptors. Biochim. Biophys. Acta 1818, 718729.
  • Yu C. R. and Role L. W. (1998) Functional contribution of the α7 subunit to multiple subtypes of nicotinic receptors in embryonic chick sympathetic neurones. J. Physiol. 509, 651665.