SEARCH

SEARCH BY CITATION

Keywords:

  • allelic dropout;
  • conservation genetics;
  • DNA yield;
  • GenomiPhi;
  • whole genome amplification

Abstract

Conservation and population genetic studies are sometimes hampered by insufficient quantities of high quality DNA. One potential way to overcome this problem is through the use of whole genome amplification (WGA) kits. We performed rolling circle WGA on DNA obtained from matched hair and tissue samples of North American red squirrels (Tamiasciurus hudsonicus). Following polymerase chain reaction (PCR) at four microsatellite loci, we compared genotyping success for DNA from different source tissues, both pre- and post-WGA. Genotypes obtained with tissue were robust, whether or not DNA had been subjected to WGA. DNA extracted from hair produced results that were largely concordant with matched tissue samples, although amplification success was reduced and some allelic dropout was observed. WGA of hair samples resulted in a low genotyping success rate and an unacceptably high rate of allelic dropout and genotyping error. The problem was not rectified by conducting PCR of WGA hair samples in triplicate. Therefore, we conclude that WGA is only an effective method of enhancing template DNA quantity when the initial sample is from high-yield material.