SEARCH

SEARCH BY CITATION

Keywords:

  • Coccinellidae;
  • Harmonia axyridis;
  • landscape;
  • native species decline

Abstract

Aim  Coccinellid beetles are important predators that contribute to pest suppression in agricultural landscapes. Since the introduction of the exotic coccinellids Coccinella septempunctata L. and Harmonia axyridis Pallas into the USA, several studies have reported a decline of native Coccinellidae in agroecosystems. We aimed to investigate the influence of landscape composition on native and exotic coccinellid abundance within soybean fields.

Location  Iowa, Michigan, Minnesota and Wisconsin.

Methods  As part of a 2-year study (2005–06) on the biological control of the soybean aphid, Aphis glycines Matsumura, we examined coccinellid communities in 33 soybean fields using yellow sticky card traps. Landscape heterogeneity and composition were measured at multiple spatial scales ranging 1–3.5 km from focal soybean fields where coccinellid sampling took place.

Results  Exotic species made up 90% of the total coccinellid community in Michigan soybean fields followed by Wisconsin (84%), Minnesota (66%) and Iowa (57%). Harmonia axyridis was the dominant exotic coccinellid in all states comprising 45–62% of the total coccinellid community, followed by C. septempunctata (13–30%). Two additional exotic species, Hippodamia variegata (Goeze) and Propylea quatuordecimpunctata (L.) were also found in the region. Overall, the most abundant native coccinellid was Hippodamia convergens Guerin-Meneville; however, its abundance varied across the region, comprising 0% (Michigan) to 28% (Iowa) of the total coccinellid community. Landscape structure significantly influenced the composition of coccinellid communities in soybean agroecosystems. We found that native coccinellids were most abundant in low-diversity landscapes with an abundance of grassland habitat while exotic coccinellids were associated with the abundance of forested habitats.

Main conclusion  We propose that grassland dominated landscapes with low structural diversity and low amounts of forested habitat may be resistant to exotic coccinellid build-up, particularly H. axyridis and therefore represent landscape-scale refuges for native coccinellid biodiversity.