Ecophysiological traits associated with the competitive ability of invasive Australian acacias

Authors

  • Taryn L. Morris,

    Corresponding author
    1. Department of Ecology and Evolutionary Biology, Campus Box 334, University of Colorado, Boulder, CO 80309, USA
    2. Department of Botany, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
    Search for more papers by this author
  • Karen J. Esler,

    1. Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
    2. Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
    Search for more papers by this author
  • Nichole N. Barger,

    1. Department of Ecology and Evolutionary Biology, Campus Box 334, University of Colorado, Boulder, CO 80309, USA
    Search for more papers by this author
  • Shayne M. Jacobs,

    1. Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
    Search for more papers by this author
  • Michael D. Cramer

    1. Department of Botany, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
    2. School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
    Search for more papers by this author

Taryn Morris, Department of Ecology and Evolutionary Biology, Campus Box 334, University of Colorado, Boulder, CO 80309, USA.
E-mail: taryn.morris@colorado.edu

Abstract

Aim  We explored morphological and ecophysiological traits that enable invasive Australian acacias to compete with native species for resources (light, water and nutrients) necessary to support the substantial growth associated with successful invasions.

Location  Global.

Results  Invasive Australian acacias grow large and seed prolifically in invaded regions. The greater capacity for vegetative growth is underpinned by their ability to acquire and efficiently use resources in non-native habitats. Key biological traits that enhance acquisition include (1) rapid and substantial allocation to root mass (up to 6-fold more than co-occurring native species) directed towards deep roots (at least 50% longer than those of natives) and to extensive shallow root networks; (2) heteroblasty, in most species, conferring high relative growth rates as bipinnate seedlings but long-lived, nutrient-conserving phyllodes as adults and (3) strong N2-fixation abilities.

Main conclusions  The ecophysiological traits that govern the competitive interaction of invasive Australian acacias with native species are an important component of the recognized suite of factors including introduction history, human use and enemy release that combine to produce successful invasions. Traits interact to give Australian acacias competitive advantage over many native species. One such interaction is that of N2 fixation, which when coupled with slow decomposition of sclerophyllous phyllodes results in alteration of soil nutrient cycling. The lasting legacy of soil N-enrichment hinders the competitive ability of native species and further enhances invasions. The importance of edaphic factors and competitive interactions in determining invasive success should be considered in predictive modelling of species distributions.

Ancillary