SEARCH

SEARCH BY CITATION

References

  • AGIS (2007) Agricultural geo-referenced information system. Available at: http://www.agis.agric.za (accessed 15 March 2009).
  • Anderson, R.P., Gomez-Laverde, M. & Peterson, A.T. (2002) Geographical distributions of spiny pocket mice in South America: insights from predictive models. Global Ecology and Biogeography, 11, 131141.
  • Austin, M.P. (1980) Searching for a model for use in vegetation analysis. Vegetatio, 42, 1121.
  • Austin, M.P. (1987) Models for the analysis of species’ response to environmental gradients. Vegetatio, 69, 3545.
  • Austin, M.P. & Meyers, J.A. (1996) Current approaches to modelling the environmental niche of eucalypts: implications for management of forest biodiversity. Forest Ecology and Management, 85, 95106.
  • Boucher, C. & Stirton, C.H. (1978) Acacia cyclops. Plant invaders, beautiful, but dangerous: a guide to the identification and control of twenty-six plant invaders of the Province of the Cape of Good Hope (ed. by C.H.Stirton), pp. 4043, Department of Nature and Environmental Conservation of the Cape Provincial Administration, Cape Town.
  • Broennimann, O. & Guisan, A. (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biology Letters, 4, 585589.
  • Coreau, A., Pinay, G., Thompson, J.D., Cheptou, P.-O. & Mermet, L. (2009) The rise of research on futures in ecology: rebalancing scenarios and predictions. Ecology Letters, 12, 12771286.
  • Dormann, C.F. (2007) Promising the future? Global change projections of species distributions. Basic and Applied Ecology, 8, 387397.
  • Elith, J. & Graham, C. (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32, 6677.
  • Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40, 677697.
  • Elith, J., Graham, C.H., Anderson, R.P. et al. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129151.
  • Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802813.
  • Elith, J., Kearney, M. & Phillips, S. (2010) The art of modelling range-shifting species. Methods in Ecology and Evolution, 1, 330342.
  • Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 4357.
  • Frei, C., Schöll, R., Fukutome, S., Schmidli, J. & Vidale, P.L. (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. Journal of Geophysical Research, 11, D06105.
  • Gaertner, M., Den-Breeÿen, A., Hui, C. & Richardson, D.M. (2009) Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: a meta-analysis. Progress in Physical Geography, 33, 319338.
  • Gill, A.M. (1985) Acacia cyclops G. Don (Leguminosae-Mimosaceae) in Australia: distribution and dispersal. Journal of the Royal Society of Western Australia, 67, 5965.
  • Gordon, H.B., Rotstayn, L.D., McGregor, J.L., Dix, M.R., Kowalczyk, E.A., O’Farrell, S.P., Waterman, L.J., Hirst, A.C., Wilson, S.G., Collier, M.A., Watterson, I.G. & Elliott, T.I. (2002) The CSIRO Mk3 Climate System Model, CSIRO Atmospheric Research Technical Paper No. 60, CSIRO Atmospheric Research, Aspendale.
  • Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147186.
  • Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolacted climate surfaces for global land areas. International Journal of Climatology, 25, 19651978.
  • Hirzel, A.H. & Le Lay, G. (2008) Habitat sutability modelling and niche theory. Journal of Applied Ecology, 45, 13721381.
  • Hobbs, R.J. & McIntyre, S. (2005) Categorizing Australian landscapes as an aid to assessing the generality of landscape management guidelines. Global Ecology and Biogeography, 14, 115.
  • IPCC (2000) Special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
  • Kearney, M. (2006) Habitat, environment and niche: what are we modelling? Oikos, 115, 186191.
  • Kearney, M. & Porter, W. (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters, 12, 334350.
  • Kearney, M.R., Wintle, B.A. & Porter, W.P. (2010) Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conservation Letters, 3, 203213.
  • Köppen, W. (1936) Das geographische System der Klimate. Handbuch der Klimatologie (ed. by W.Köppen and R.Geiger), pp. 144, Verlag von Gebrüder Borntraeger, Berlin.
  • Kriticos, D.J. & Randall, R.P. (2001) A comparison of systems to analyze potential weed distributions. Weed risk assessment (ed. by R.H.Groves and F.D.Panetta), pp. 6179, CSIRO Publishing, Collingwood.
  • Kriticos, D.J., Webber, B.L., Leriche, A., Ota, N., Macadam, I., Bathols, J. & Scott, J.K. (2011) CliMond: global high resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, doi: 10.1111/j.2041-210X.2011.00134.x.
  • Le Maitre, D.C., Gaertner, M., Marchante, E., Ens, E.-J., Holmes, P.M., Pauchard, A., O’Farrell, P.J., Rogers, A.M., Blanchard, R., Blignaut, J. & Richardson, D.M. (2011) Impacts of invasions by Australian acacias: implications for management and restoration. Diversity and Distributions, 17, 10151029.
  • Le Roux, J.J., Brown, G.K., Byrne, M., Richardson, D.M. & Wilson, J.R.U. (2011) Phytogeographic consequences of different introduction histories of invasive Australian Acacia species and Paraserianthes lophantha (Fabaceae) in South Africa. Diversity and Distributions, 17, 861871.
  • Liu, C., Berry, P.M., Dawson, T.P. & Pearson, R.G. (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385393.
  • Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145151.
  • Maslin, B.R. (2001) Wattle. Acacias of Australia. CSIRO Publishing & ABRS, Perth.
  • Maslin, B.R. & McDonald, M.W. (2004) AcaciaSearch: evaluation of Acacia as a woody crop option for southern Australia. Rural Industries Research and Development Corporation, Canberra.
  • Mau-Crimmins, T.M., Schussmann, H.R. & Geiger, E.L. (2006) Can the invaded range of a species be predicted sufficiently using only native-range data? Lehmann lovegrass (Eragrostis lehmanniana) in the southwestern United States. Ecological Modelling, 193, 736746.
  • Miller, J.T., Murphy, D.J., Brown, G.K., Richardson, D.M. & González-Orozco, C.E. (2011) The evolution and phylogenetic placement of invasive Australian Acacia species. Diversity and Distributions, 17, 848860.
  • New, M., Lister, D., Hulme, M. & Makin, I. (2002) A high-resolution data set of surface climate over global land areas. Climate Research, 21, 125.
  • Pearson, R.G., Thuiller, W., Araújo, M.B., Martinez-Meyer, E., Brotons, L., McClean, C., Miles, L., Segurado, P., Dawson, T.P. & Lees, D.C. (2006) Model-based uncertainty in species range prediction. Journal of Biogeography, 33, 17041711.
  • Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Peterson, A.T. (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102117.
  • Phillips, S.J. & Dudík, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161175.
  • Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231259.
  • Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J. & Ferrier, S. (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181197.
  • van der Ploeg, R.R., Böhm, W. & Kirkham, M.B. (1999) On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Science Society of America Journal, 63, 10551062.
  • Poynton, R.J. (2009) Tree planting in southern Africa, Volume 3: Other genera. Department of Agriculture, Forestry and Fisheries, Pretoria, South Africa.
  • R Development Core Team (2009) . The R Project for Statistical Computing. Available at: http://www.r-project.org/ (last accessed 2 May 2011).
  • Richardson, D.M. & Rejmánek, M. (2011) Trees and shrubs as invasive alien species – a global review. Diversity and Distributions, 17, 788809.
  • Richardson, D.M., Carruthers, J., Hui, C., Impson, F.A.C., Miller, J.T., Robertson, M.P., Rouget, M., Le Roux, J.J. & Wilson, J.R.U. (2011) Human-mediated introductions of Australian acacias – a global experiment in biogeography. Diversity and Distributions, 17, 771787.
  • Ridgeway, G. (2007) Generalized boosted regression models. In Documentation on the R Package ‘gbm’, version 1.6-3. Available at: http://r.meteo.uni.wroc.pl/web/packages/gbm/index.html (last accessed 2 May 2011).
  • Rodda, G.H., Jarnevich, C.S. & Reed, R.N. (2011) Challenges in identifying sites climatically matched to the native ranges of animal invaders. PLoS ONE, 6, 118.
  • Rutherford, M.C. (1997) Categorization of biomes. Vegetation of southern Africa (ed. by R.M.Cowling, D.M.Richardson and S.M.Pierce), pp. 9198, Cambridge University Press, Cambridge.
  • Sanchez-Fernandez, D., Lobo, J.M. & Hernandez-Manrique, O.L. (2011) Species distribution models that do not incorporate global data misrepresent potential distributions: a case study using Iberian diving beetles. Diversity and Distributions, 17, 163171.
  • Schulze, B.R. (1965) Climate of South Africa. Part 8: general survey. Department of Environment Affairs, Pretoria.
  • Scott, J.K. & Yeoh, P.B. (1999) Bionomics and the predicted distribution of the aphid Brachycaudus rumexicolens (Patch). Bulletin of Entomological Research, 89, 97106.
  • Shaughnessy, G.L. (1980) Historical ecology of alien woody plants in the vicinity of Cape Town, South Africa, PhD Thesis. University of Cape Town, Cape Town.
  • Shaughnessy, G.L. (1986) A case study of some woody plant introductions to the Cape Town area. The ecology and management of biological invasions in southern Africa (ed. by I.A.W.Macdonald, F.J.Kruger and A.A.Ferrar), pp. 3743, Oxford University Press, Cape Town.
  • Shelford, V.E. (1963) The ecology of North America. University of Illinois Press, Urbana, USA.
  • Soberón, J. (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10, 11151123.
  • Soberón, J.M. (2010) Niche and area of distribution modeling: a population ecology perspective. Ecography, 33, 159167.
  • Soberón, J. & Nakamura, M. (2009) Niches and distributional areas: concepts, methods and assumptions. Proceedings of the National Academy of Sciences USA, 106, 1964419650.
  • Stirton, C.H. (ed.) (1978) Plant invaders, beautiful but dangerous. ABC Press, Cape Town.
  • Sutherst, R.W. (2003) Prediction of species geographical ranges. Journal of Biogeography, 30, 805816.
  • Sutherst, R.W. & Bourne, A.S. (2009) Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biological Invasions, 11, 12311237.
  • Sutherst, R.W. & Maywald, G.F. (1985) A computerised system for matching climates in ecology. Agriculture, Ecosystems and Environment, 13, 281299.
  • Sutherst, R.W., Maywald, G.F. & Kriticos, D.J. (2007) CLIMEX Version 3: User’s guide. Hearne Scientific Software Pty Ltd, Melbourne. Available at: http://www.hearne.com.au/attachments/ClimexUserGuide3.pdf (accessed 14 September 2010).
  • Turpie, J.K., Heydenrych, B.J. & Lamberth, S.J. (2003) Economic value of terrestrial and marine biodiversity in the Cape Floristic Region: implications for defining effective and socially optimal conservation strategies. Biological Conservation, 112, 233251.
  • VanDerWal, J., Shoo, L.P., Graham, C. & Williams, S.E. (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecological Modelling, 220, 589594.
  • Venette, R.C., Kriticos, D.J., Magarey, R.D., Koch, F.H., Baker, R.H.A., Worner, S.P., Gómez Raboteaux, N.N., McKenney, D.W., Dobesberger, E.J., Yemshanov, D., de Barro, P.J., Hutchison, W.D., Fowler, G., Kalaris, T.M. & Pedlar, J. (2010) Pest risk maps for invasive alien species: a roadmap for improvement. BioScience, 60, 349362.
  • Walther, G.-R., Roques, A., Hulme, P.E. et al. (2009) Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution, 24, 686693.
  • Zaniewski, A.E., Lehmann, A. & Overton, J.M. (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecological Modelling, 157, 261280.
  • Zar, J.H. (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River, New Jersey.
  • Zimmermann, N.E., Yoccoz, N.G., Edwards, T.C. Jr, Meler, E.S., Thuiller, W., Guisan, A., Schmatz, D.R. & Pearman, P.B. (2009) Climatic extremes improve predictions of spatial patterns of tree species. Proceedings of the National Academy of Sciences USA, 106, 1972319728.