Get access

From lowlands to highlands: searching for elevational patterns of species richness and distribution of scarab beetles in Costa Rica


Alejandra García-López, Centro Iberoamericano de la Biodiversidad (CIBIO), Universidad de Alicante. San Vicente del Raspeig, 03080 Alicante, Spain.


Aim  Understanding the heterogeneous distribution of species on mountains is an important aim in ecology. Altitudinal gradients have enormous potential for improving our knowledge of trends in biodiversity and conservation. In this study, we investigated the variation in scarab beetle diversity (Dynastinae, Rutelinae and Melolonthinae) along an elevational tropical forest gradient.

Location  The Atlantic slope of the Guanacaste mountain range in Costa Rica.

Methods  Ultraviolet light traps placed in six forests situated from 100 to 1510 m were used. Changes in species composition and richness among elevations were investigated. Differences in the altitudinal patterns using different groups of species were examined: the whole assemblage, each separate subfamily and two different trophic habits (phytophagous or saproxylic). The effects of temperature, humidity and elevation on scarab distribution were tested using canonical correspondence analyses. The relationship between the community similarity of the studied forests and the altitudinal distance among them was also analysed.

Results  Species composition and richness changed along the gradient. The peak in species richness varied depending on the species group considered and in all cases occurred 500 or 800 m. Forests at these altitudes were also the richest in exclusive species. Species composition turnover among elevations appeared with a clear separation between lowland and highland fauna. The latter was lower in richness but also had exclusive species. Temperature, humidity and altitude affected species distribution, with altitude being the most important factor for all the subfamilies studied.

Main conclusions  Our results showed that species distribution fits a hump-shaped pattern. The peak of this pattern varied depending on the taxonomic group and mountain analysed, highlighting the importance of evolutionary processes as species distribution drivers. The fact that species richness peaked at elevations where human impact is currently important underlines the value of the development of conservation strategies for these areas.