SEARCH

SEARCH BY CITATION

Abstract

Sub-fossil stromatolites (5000–3000 years old) occur on the marginal flat surrounding Marion Lake (South Australia). A micrite/microsparite crystal fabric characterises these fine-grained, well-laminated stromatolites, which lack trapped grains. The internal lamination is characterised by a sub-millimetric alternation of porous and dense laminae. The microfabric of the laminae is ubiquitously composed of a fine (10–20 μm) peloidal texture, with many thinner aphanitic layers. Aggregates of very fine, low-Mg calcite and aragonite constitute both peloidal and aphanitic micrite, which is coated, respectively, by spherulitic and fringing acicular microspar. Micrite, with a high organic matter content, is formed of coalescing nanospheres grading into small polyhedrons, probably composed mainly of aragonite, with less calcite enriched in Mg, Sr, Na and S. Bacteria-like microfossils and relics of extracellular polymeric substance (EPS) occur abundantly within this micritic framework. The former consist of empty moulds and mineralised bodies of coccoid forms, whereas EPS relics consist of sheet-like or filamentous structures that appear both mineralised and more often still preserved as a C-enriched dehydrated substance that represents the main organic matter component of the deposit. Acicular crystals, which show a prismatic elongate shape, are composed of Mg-depleted aragonite that lacks fossils or organic relicts. Degrading EPS and micro-organisms appear gradually to be replaced and entombed by the nanospherical precipitates, implying the existence of processes of organo-mineralisation within an original syn-sedimentary microbial community. Succeeding micron-scale crystals merge to form isolated or connected micritic aggregates (the peloids), followed by the gradual formation of the acicular crystals as purely inorganic precipitates.