• Arnold, K.W. and Kaspar, C.W. (1995) Starvation-and stationary-phase-induced acid tolerance in Escherichia coli O157:H7. Appl Environ Microbiol 61, 20372039.
  • Brown, C.M., Snowdon, C.F., Slee, B., Sandle, L.N. and Rees, W.D. (1995) Neural influences on human esophageal and salivary alkali secretion. Dig Dis Sci 40, 16421650.
  • Castanie-Cornet, M.P. and Foster, J.W. (2001) Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiology 147, 709715.
  • Diez-Gonzalez, F. and Karaibrahimoglu, Y. (2004) Comparison of the glutamate-, arginine- and lysine-dependent acid resistance systems in Escherichia coli O157:H7. J Appl Microbiol 96, 12371244.
  • Diez-Gonzalez, F. and Russell, J.B. (1999) Factors affecting the extreme acid resistance of Escherichia coli O157:H7. Food Microbiol 16, 367374.
  • Dunn, B.E., Cohen, H. and Blaser, M.J. (1997) Helicobacter pylori. Clin Microbiol Rev 10, 720741.
  • Foster, J.W. (1991) Salmonella acid shock proteins are required for the adaptive acid tolerance response. J Bacteriol 173, 68966902.
  • Foster, J.W. (1993) The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins. J Bacteriol 175, 19811987.
  • Foster, J.W. and Hall, H.K. (1990) Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol 172, 771778.
  • Gale, E.F. (1946) The bacterial amino acid decarboxylases. Adv Enzymol 6, 132.
  • Guilfoyle, D.E. and Hirshfield, I.N. (1996) The survival benefit of short-chain organic acids and the inducible arginine and lysine decarboxylase genes for Escherichia coli. Lett Appl Microbiol 22, 393396.
  • Guilloton, M.B., Lamblin, A.F., Kozliak, E.I., Gerami-Nejad, M., Tu, C., Silverman, D., Anderson, P.M. and Fuchs, J.A. (1993) A physiological role for cyanate-induced carbonic anhydrase in Escherichia coli. J Bacteriol 175, 14431451.
  • Hashimoto, M. and Kato, J. (2003) Indispensability of the Escherichia coli carbonic anhydrases YadF and CynT in cell proliferation at a low CO2 partial pressure. Biosci Biotechnol Biochem 67, 919922.
  • Hengge-Aronis, R. (1993) Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell 72, 165168.
  • King, D. Jr. and Nagel, C.W. (1975) The influence of carbon dioxide upon the metabolism of Pseudomonas aeruginosa. J Food Sci 40, 362366.
  • Kusian, B., Sultemeyer, D. and Bowien, B. (2002) Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO2 concentrations. J Bacteriol 184, 50185026.
  • Lin, J., Lee, I.S., Frey, J., Slonczewski, J.L. and Foster, J.W. (1995) Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol 177, 40974104.
  • Lin, J., Smith, M.P., Chapin, K.C., Baik, H.S., Bennett, G.N. and Foster, J.W. (1996) Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol 62, 30943100.
  • Takayama, M., Ohyama, T., Igarashi, K. and Kobayashi, H. (1994) Escherichia colicad operon functions as a supplier of carbon dioxide. Mol Microbiol 11, 913918.
  • Vogel, H.J. and Bonner, D.M. (1956) Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218, 97106.