• Open Access

Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper

Authors


Harold T. Michels, Copper Development Association, 260 Madison Avenue, New York, NY 10016, USA.
E-mail: hmichels@cda.copper.org

Abstract

Aims:  To compare silver and copper, metals with known antimicrobial properties, by evaluating the effects of temperature and humidity on efficacy by challenging with methicillin resistant Staphylococcus aureus (MRSA).

Methods and Results:  Using standard methodology described in a globally used Japanese Industrial Standard, JIS Z 2801, a silver ion-containing material exhibited >5 log reduction in MRSA viability after 24 h at >90% relative humidity (RH) at 20°C and 35°C but only a <0·3 log at ∼22% RH and 20°C and no reduction at ∼22% RH and 35°C. Copper alloys demonstrated >5 log reductions under all test conditions.

Conclusions:  While the high humidity (>90% RH) and high temperature (35°C) utilized in JIS Z 2801 produce measurable efficacy in a silver ion-containing material, it showed no significant response at lower temperature and humidity levels typical of indoor environments.

Significance and Impact of the Study:  The high efficacy levels displayed by the copper alloys, at temperature and humidity levels typical of indoor environments, compared to the low efficacy of the silver ion-containing material under the same conditions, favours the use of copper alloys as antimicrobial materials in indoor environments such as hospitals.

Ancillary