Mast cell activation involves plasma membrane potential- and thapsigargin-sensitive intracellular calcium pools

Authors


Abstract

Summary— The regulation and role of the intracellular Ca2+ pools were studied in rat peritoneal mast cells. Cytosolic free calcium concentration ([Ca2+]i) was monitored in fura-2 loaded mast cells. In the presence of Ca2+ and K+, compound 48/80 induced a biphasic increase in [Ca2+]i composed of a fast transient phase and an apparent sustained phase. The sustained phase was partially inhibited by the addition of Mn2+. DTPA, a cell-impermeant chelator of Mn2+, reversed this inhibition, suggesting that a quenching of fura-2 fluorescence occurs in the extracellular medium. In the absence of extracellular Ca2+, the transient phase, but not the sustained one, could be preserved, provided that mast cells were depolarized. The transient phase was completely abolished by thapsigargin, a microsomal Ca2+-ATPase inhibitor. Maximum histamine release induced by either compound 48/80 or antigen was obtained in the absence of added Ca2+ only when mast cells were depolarized. These histamine releases were inhibited by low doses (< 30 nM) of thapsigargin. Thapsigargin at higher doses induced histamine release which was unaffected by changing the plasma membrane potential, but was completely dependent on extracellular Ca2+, showing that a Ca2+ influx is required for thapsigargin-induced exocytosis. Together, these results suggest that the mobilization of Ca2+ from thapsigargin sensitive-intracellular pools induced by compound 48/80 or antigen is sufficient to trigger histamine release. The modulation of these pools by the plasma membrane potential suggest their localization is close to the plasma membrane.

Ancillary