• 1
    World Health Organization. The World Health Report 2002: reducing risks, promoting healthy life. World Health Organization, Geneva, 2002. Available at: Accessed February 19, 2010.
  • 2
    Mosterd A., D' Agostino R.B., Silbershatz H. et al. Trends in the prevalence of hypertension, antihypertensive therapy, and left ventricular hypertrophy from 1950 to 1989. N. Engl. J. Med. (1999) 340 12211227.
  • 3
    Kearney P.M., Whelton M., Reynolds K., Muntner P., Wheltoh P.K., He J. Global burden of hypertension: analysis of worldwide data. Lancet (2005) 365 217223.
  • 4
    MacMahon S., Peto R., Cutler J. et al. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet (1990) 335 765774.
  • 5
    Havlik R.J., Kleinman J.C., Ingram D.D., Harris T., Cornoni-Huntley J. Antihypertensive drug therapy and survival by treatment status in a national survey. Hypertension (1989) 13 I28I32.
  • 6
    Barreiro E.J. Estratégia de simplificação molecular no planejamento racional de fármacos: a descoberta de novo agente cardioativo. Quim. Nova (2002) 25 11721180.
  • 7
    Sudo R.T., Zapata-Sudo G., Barreiro E.J. The new compound, LASSBio- 294, increases the contractility of intact and saponin-skinned cardiac muscle from Wistar rats. Br. J. Pharmacol. (2001) 134 603613.
  • 8
    Silva C.L.M., Noel F., Barreiro E.J. Cyclic GMP-dependent vasodilatory properties of LASSBio 294 in rat aorta. Br. J. Pharmacol. (2002) 135 293298.
  • 9
    Silva A.G., Zapata-Sudo G., Kummerle A.E., Fraga C.A.M., Barreiro E.J., Sudo R.T. Synthesis and vasodilatory activity of new N-acylhydrazone derivatives, designed as LASSBio-294 analogues. Bioorg. Med. Chem. (2005) 13 34313437.
  • 10
    Kümmerle A.E., Raimundo J.M., Leal C.M. et al. Studies towards the identification of putative bioactive conformation of potent vasodilator arylidene N-acylhydrazone derivatives. Eur. J. Med. Chem. (2009) 44 40044009.
  • 11
    Zapata-Sudo G., Pereira S.L., Beiral H.J.V. et al. Pharmacological characterization of (3-thienylidene)-3,4-methylenedioxybenzoylhydrazide: a novel muscarinic agonist with antihypertensive profile. Am. J. Hypertens. (2010) 23 135141.
  • 12
    Lima L.M., Barreiro E.J. Bioisosterism: a useful strategy for molecular modification and drug design. Curr. Med. Chem. (2005) 12 2349.
  • 13
    Barreiro E., Lima M. The synthesis and anti-inflammatory properties of a new sulindac analogue synthesized from natural safrole. J. Pharm. Sci. (1992) 81 12191222.
  • 14
    Barreiro E.J., Costa P.R.R., Coelho F.A.S., de Farias F.M.C. Prostaglandin analogues. Part 2. Synthesis of new derivatives from safrole isolated from sassafraz oil. J. Chem. Res. (1985) M 23012332.
  • 15
    Lima P.C., Lima L.M., da Silva K.C.M. et al. Synthesis and analgesic activity of novel N-acylarylhydrazones and isosters, derived from natural safrole. Eur. J. Med. Chem. (2000) 35 187203.
  • 16
    Sampson L.J., Hayabuchi Y., Standen N.B., Dart C. Caveolae localize protein kinase A signaling to arterial ATP-sensitive potassium channels. Circ. Res. (2004) 95 10121018.
  • 17
    Prentice D.J., Hourani S.M.O. Activation of multiple sites by adenosine analogues in the rat isolated aorta. Br. J. Pharmacol. (1996) 118 15091517.
  • 18
    Rattman Y.D., Crestani S., Lapa F.R. et al. Activation of muscarinic receptors by a hydroalcoholic extract of Dicksonia sellowiana Presl. HooK (Dicksoniaceae) induces vascular relaxation and hypotension in rats. Vascul. Pharmacol. (2009) 50 2733.
  • 19
    Li J., Li W., Altura B.T., Altura B.M. Peroxynitrite-induced relaxation in isolated rat aortic rings and mechanisms of action. Toxicol. Appl. Pharmacol. (2005) 209 269276.
  • 20
    Chao J., Stallone J.N., Liang Y.M., Chen L.M., Wang D.Z., Chao L. Kallistatin is a potent new vasodilator. J. Clin. Invest. (1997) 100 1117.
  • 21
    Zhu X., Fang L., Li Y., Du G. Endothelium-dependent and -independent relaxation induced by pinocembrin in rat aortic rings. Vascul. Pharmacol. (2007) 46 160165.
  • 22
    Raimundo J.M., Sudo R.T., Pontes L.B., Antunes F., Trachez M.M., Zapata-Sudo G. In vitro and in vivo vasodilator activity of racemic tramadol and its enantiomers in Wistar rats. Eur. J. Pharmacol. (2006) 530 117123.
  • 23
    Jackson W.F. Ion channels and vascular tone. Hypertension (2000) 35 173178.
  • 24
    Karaki H., Ozaki H., Hori M. et al. Calcium movements, distribution, and functions in smooth muscle. Pharmacol. Rev. (1997) 49 157230.
  • 25
    McFadzean I., Gibson A. The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle. Br. J. Pharmacol. (2002) 135 113.
  • 26
    Jin L., Teixeira C.E., Webb R.C., Leite R. Comparison of the involvement of protein kinase C in agonist-induced contractions in mouse aorta and corpus cavernosum. Eur. J. Pharmacol. (2008) 590 363368.
  • 27
    Ma J., Pan Z. Retrograde activation of store-operated calcium channel. Cell Calcium (2003) 33 375384.
  • 28
    Ding Y., Vaziri N.D. Nifedipine and diltiazem but not verapamil up-regulate endothelial nitric-oxide synthase expression. J. Pharmacol. Exp. Ther. (2000) 292 606609.
  • 29
    Krenek P., Salomone S., Kyselovic J., Wibo M., Morel N., Godfraind T. Lacidipine prevents endothelial dysfunction in salt-loaded stroke-prone hypertensive rats. Hypertension (2001) 37 11241128.
  • 30
    Berkels R., Egink G., Marsen T.A., Bartels H., Roesen R., Klaus W. Nifedipine increases endothelial nitric oxide bioavailability by antioxidative mechanisms. Hypertension (2001) 37 240245.
  • 31
    Berkels R., Mueller A., Roesen R., Klaus W. Nifedipine and Bay K 8644 induce an increase of [Ca2+]i and NO in endothelial cells. J. Cardiovasc. Pharmacol. Ther. (1999) 4 175181.
  • 32
    Koshita M., Takano H., Nakahira Y., Suzuki H. Pranidipine enhances relaxation produced by endothelium-derived relaxing factor in carotid artery. Eur. J. Pharmacol. (1999) 385 191197.
  • 33
    Leung H.S., Yao X., Leung F.P. et al. Cilnidipine, a slow-acting Ca2+ channel blocker, induces relaxation in porcine coronary artery: role of endothelial nitric oxide and [Ca2+]i. Br. J. Pharmacol. (2006) 147 5563.
  • 34
    Adams D.J., Barakeh J., Laskey R., Van Breemen C. Ion channels and intracellular calcium in vascular endothelial cells. FASEB J. (1989) 3 23892400.
  • 35
    Zhang X., Hintze T.H. Amlodipine releases nitric oxide from canine coronary microvessels: an unexpected mechanism of action of a calcium channel-blocking agent. Circulation (1998) 97 576580.
  • 36
    Kunes J., Hojna S., Kadlecova M. et al. Altered balance of vasoactive systems in experimental hypertension: the role of relative NO deficiency. Physiol. Res. (2004) 53 S23S34.
  • 37
    Torok J. Participation of nitric oxide in different models of experimental hypertension. Physiol. Res. (2008) 57 813825.
  • 38
    Sonkusare S., Palade P.T., Marsh J.D., Telemaque S., Pesic A., Rusch N.J. Vascular calcium channels and high blood pressure: pathophysiology and therapeutic implications. Vascul. Pharmacol. (2006) 44 131142.
  • 39
    Pratt P.F., Bonnet S., Ludwig L.M., Bonnet P., Rusch N.J. Upregulation of L-type Ca2+ channels in mesenteric and skeletal arteries of SHR. Hypertension (2002) 40 214219.
  • 40
    Ohya Y., Abe I., Fujii K., Takata Y., Fujishima M. Voltage-dependent Ca2+ channels in resistance arteries from spontaneously hypertensive rats. Circ. Res. (1993) 73 10901099.
  • 41
    Ohya Y., Tsuchihashi T., Kagiyama S., Abe I., Fujishima M. Single L-type calcium channels in smooth muscle cells from resistance arteries of spontaneously hypertensive rats. Hypertension (1998) 31 11251129.
  • 42
    Narita H., Nagao T., Yabana H., Yamaguchi I. Hypotensive and diuretic actions of diltiazem in spontaneously hypertensive and Wistar Kyoto rats. J. Pharmacol. Exp. Ther. (1983) 227 472477.
  • 43
    Takata Y., Hutchinson J.S. Exaggerated hypotensive responses to calcium antagonists in spontaneously hypertensive rats. Clin. Exp. Hypertens A. (1983) 5 827847.
  • 44
    Taira N. Differences in cardiovascular profile among calcium antagonists. Am. J. Cardiol. (1987) 59 B24B29.
  • 45
    Rizzon P., Di Biase M., Calabrese P., Brindicci G., Chiddo A. Electrophysiologic evaluation of intravenous verapamil in man. Eur. J. Cardiol. (1977) 6 179194.
  • 46
    Triggle D.J. Calcium-channel drugs: structure-function relationships and selectivity of action. J. Cardiovasc. Pharmacol. (1991) 18 S1S6.
  • 47
    Welling A., Ludwig A., Zimmer S., Klugbauer N., Flockerzi V., Hofmann F. Alternatively spliced IS6 segments of the α1c gene determine the tissue-specific dihydropyridine sensitivity of cardiac and vascular smooth muscle L-Type Ca2+ channels. Circ. Res. (1997) 81 526532.
  • 48
    Wang J., Shen F.M., Zhang X.F., Wang M.W., Su D.F. Functional arterial baroreflex attenuates the effects of antihypertensive drugs in conscious rats. J. Pharmacol. Sci. (2006) 100 271277.
  • 49
    Vincent M.E., Swanson B.N., Shepley K., Ferguson R.K. Hemodynamic and humoral responses to enalapril and nifedipine in the rat. Clin. Exp. Hypertens. A. (1984) 6 14851497.
  • 50
    Richer C., Lefevre-Borg F., Cadilhac M., Cavero I., Giudicelli J.F. Nicardipine: experimental antihypertensive action and interactions with the alpha-adrenergic sympathetic system. J. Pharmacol. (1985) 16 4548.
  • 51
    Fujisawa M., Yorikane R., Chiba S., Koike H. Chronotropic effects of azelnidipine, a slow- and long-acting dihydropyridine-type calcium channel blocker, in anesthetized dogs: a comparison with amlodipine. J. Cardiovasc. Pharmacol. (2009) 53 325332.