SEARCH

SEARCH BY CITATION

References

  • 1
    Bousquet J, Khaltaev N, Cruz AA et al. Allergic rhinitis and its impact on asthma (ARIA) 2008 update. Allergy 2008; 63(Suppl. 86):8160.
  • 2
    Editorial Committee for PG-MARJ. Practical guideline for the management of allergic rhinitis in Japan (6th edition). Tokyo: Life Science, 2008.
  • 3
    Okuda M. Epidemiology of Japanese cedar pollinosis throughout Japan. Ann Allergy Asthma Immunol 2003; 91:28896.
  • 4
    Okano M, Nishioka K, Nagano T, Ohta N, Masuda Y. Clinical characterization of allergic patients sensitized to Chamaecyparis obtusa – using AlaSTAT system. Arerugi 1994; 43:117984.
  • 5
    Ito H, Nishimura J, Suzuki M et al. Specific IgE to Japanese cypress (Chamaecyparis obtusa) in patients with nasal allergy. Ann Allergy Asthma Immunol 1995; 74:299303.
  • 6
    Sone K, Dairiki K, Morikubo K et al. Identification of human T cell epitopes in Japanese cypress pollen allergen, Cha o 1, elucidates the intrinsic mechanism of cross-allergenicity between Cha o 1 and Cry j 1, the major allergen of Japanese cedar pollen, at the T cell level. Clin Exp Allergy 2005; 35:66471.
  • 7
    Yamamoto H, Yamada T, Kubo S et al. Efficacy of oral olapatadine hydrochloride for the treatment of seasonal allergic rhinitis: a randomized, double-blind, placebo-controlled study. Allergy Asthma Proc 2010; 31:296303.
  • 8
    Sasaki K, Okamoto Y, Yonekura S et al. Cedar and cypress pollinosis and allergic rhinitis: quality of life effects of early intervention with leukotriene receptor antagonists. Int Arch Allergy Immunol 2009; 149:3508.
  • 9
    Suzuki M, Komiyama N, Itoh M et al. Purification, characterization and molecular cloning of Cha o 1, a major allergen of Chamaecyparis obtusa (Japanese cypress) pollen. Mol Immunol 1996; 33:45160.
  • 10
    Mori T, Yokoyama M, Komiyama N, Okano M, Kino K. Purification, identification, and cDNA cloning of Cha o 2, the second major allergen of Japanese cypress pollen. Biochem Biophys Res Commun 1999; 263:16671.
  • 11
    Gunawan H, Takai T, Kamijo S et al. Characterization of proteases, proteins, and eicosanoid-like substances in soluble extracts from allergenic pollen grains. Int Arch Allergy Immunol 2008; 147:27688.
  • 12
    Wang XL, Takai T, Kamijo S, Gunawan H, Ogawa H, Okumura K. NADPH oxidase activity in allergenic pollen grains of different plant species. Biochem Biophys Res Commun 2009; 387:4304.
  • 13
    Maeda M, Kamamoto M, Yamamoto S, Kimura M, Okano M, Kimura Y. Glycoform analysis of Japanese cedar pollen allergen, Cry j 1. Biosci Biotech Biochem 2005; 69:17005.
  • 14
    Kimura Y, Kuroki M, Maeda M, Okano M, Yokoyama M, Kino K. Glycoform analysis of Japanese cypress pollen allergen, Cha o 1: a comparison of the glycoforms of cedar and cypress pollen allergens. Biosci Biotech Biochem 2008; 72:48591.
  • 15
    Namba H, Saito K, Sahashi N. Relationship between combined pollen count of Cryptomeria japonica and Cupressaceae and precipitation in July of the previous year. Jpn J Palynol 2000; 46:11524.
  • 16
    Namba H, Saitou K, Sahashi N. Assumption of the area supplying Okayama Prefecture with Cryptomeria japonica and Cupressaceae airborne pollen, and of their scattering routes. Arerugi 1999; 48:133748.
  • 17
    Durham SR, Ying S, Varney VA et al. Cytokine messenger RNA expression for IL-3, IL-4, IL-5, and granulocyte/macrophage colony-stimulating factor in the nasal mucosa after local allergen provocation: relationship to tissue eosinophilia. J Immunol 1992; 148:23904.
  • 18
    Akdis M, Verhagen A, Taylor F et al. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med 2004; 199:156775.
  • 19
    Sokol CL, Barton GM, Farr AG, Medzhitov R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol 2008; 9:3108.
  • 20
    Jutel M, Akdis M, Blaser K, Akdis CA. Mechanisms of allergen specific immunotherapy – T cell tolerance and more. Allergy 2006; 61:796807.
  • 21
    Sone K, Dairiki K, Morikubo K et al. Recognition of T cell epitopes unique to Cha o 2, the major allergen in Japanese cypress pollen, in allergic patients cross-reactive to Japanese cedar and Japanese cypress pollen. Allergol Int 2009; 58:23745.
  • 22
    Okano M, Fujiwara T, Higaki T et al. Characterization of pollen antigen-induced IL-31 production by peripheral blood mononuclear cells in allergic rhinitis. J Allergy Clin Immunol 2011; 127:2779.
  • 23
    Dillon SR, Sprecher C, Hammond A et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 2004; 5:75260.
  • 24
    Bilsborough J, Leung DYM, Maurer M et al. IL-31 is associated with cutaneous lymphocyte antigen-positive skin homing T cells in patients with atopic dermatitis. J Allergy Clin Immunol 2006; 117:41825.
  • 25
    Lei Z, Liu G, Huang Q et al. SCF and IL-31 rather than IL-17 and BAFF are potential indicators in patients with allergic asthma. Allergy 2007; 63:32732.
  • 26
    Kowalski ML. Systemic and specific treatment for a global disease: allergen immunotherapy revised. Allergy 2006; 61:7915.
  • 27
    Durham SR, Walker SM, Varga E-M et al. Long-term clinical efficacy of grass-pollen immunotherapy. N Engl J Med 1999; 341:46875.
  • 28
    Eng PA, Boer-Reinhold M, Heijnen IAFM, Gnehm HPE. Twelve-year follow-up after discontinuation of preseasonal grass pollen immunotherapy in childhood. Allergy 2006; 61:198201.
  • 29
    Jacobsen L, Niggemann B, Dreborg S et al. Specific immunotherapy has long-term preventive effect of seasonal and perennial asthma: 10-year follow-up on the PAT study. Allergy 2007; 62:9438.
  • 30
    Okuda M, Ohkubo K, Goto M et al. Comparative study of two Japanese rhinoconjunctivitis quality-of-life questionnaires. Acta Otolaryngol 2005; 125:73644.
  • 31
    Okano M, Otsuki N, Azuma M et al. Allergen-specific immunotherapy alters the expression of BTLA, a co-inhibitory molecule, in allergic rhinitis. Clin Exp Allergy 2008; 38:1891900.
  • 32
    Canonica GW, Compalati E. Minimal persistent inflammation in allergic rhinitis: implications for current treatment strategies. Clin Exp Immunol 2009; 158:26071.
  • 33
    Nomiya R, Okano M, Fujiwara T et al. CRTH2 plays an essential role in the pathophysiology of Cry j 1-induced pollinosis in mice. J Immunol 2008; 180:56808.
  • 34
    Suzuki Y, Inoue T, Yamamoto A, Sugimoto Y. Prophylactic effects of the histamine H1 receptor antagonist epinastine and dual thromboxane A2 receptor and chemoattractant receptor-homologous molecule expressed on Th2 cells antagonist ramatroban on allergic rhinitis model in mice. Biol Pharm Bull 2011; 34:50710.
  • 35
    Leurs R, Church MK, Taglialatela M. H1-antihistamines: inverse agonism, anti-inflammatory actions and cardiac effects. Clin Exp Allergy 2002; 32:48998.
  • 36
    Muzuguchi H, Kitamura Y, Kodo Y et al. Preseasonal prophylactic treatment with antihistamines suppresses nasal symptoms and expression of histamine H1 receptor mRNA in the nasal mucosa of patients with pollinosis. Methods Find Exp Clin Pharmacol 2010; 32:7458.
  • 37
    Fujieda S, Yamada T, Kojima A et al. Clinical efficacy of prophylactic administration of a second-generation antihistamine to patients with Japanese cedar pollinosis: a three-year multicenter, retrospective study. Jap J Rhinol 2007; 46:1828.
  • 38
    Okano M. Mechanisms and clinical implications of glucocorticosteroids in the treatment of allergic rhinitis. Clin Exp Immunol 2009; 158:16473.