• 1
    Watanabe T, Taguchi Y, Hayashi H et al. Evidence for the presence of a histaminergic neuron system in the rat brain: an’immunohistochemical analysis. Neurosci Lett 1983; 39:24954.
  • 2
    Villemagne VL, Dannals RF, Sanchez-Roa PM et al. Imaging histamine H1 receptors in the living human brain with carbon-11-pyrilamine. J Nucl Med 1991; 32:30811.
  • 3
    Sakai K, Mansari ME, Lin J, Zhang J, Mercier GV. The posterior hypothalamus in the regulation of wakefulness and paradoxical sleep. In: Mancia M, ed. The diencephalon and sleep. New York: Raven, 1990: 17198.
  • 4
    Yanai K, Okamura N, Tagawa M, Itoh M, Watanabe T. New findings in pharmacological effects induced by antihistamines: from PET studies to knock-out mice. Clin Exp Allergy 1999; 29:2936.
  • 5
    Shamsi Z, Hindmarch I. Sedation and antihistamines: a review of inter-drug differences using proportional impairment ratios. Hum Psychopharmacol 2000; 15:S330.
  • 6
    Tashiro M, Horikawa E, Mochizuki H et al. Effects of fexofenadine and hydroxyzine on brake reaction time during car-driving with cellular phone use. Hum Psychopharmacol 2005; 20:5019.
  • 7
    Turner C, Handford AD, Nicholson AN. Sedation and memory: studies with a histamine H-1 receptor antagonist. J Psychopharmacol 2006; 20:50617.
  • 8
    Theunissen EL, Jonkman LM, Kuypers KP, Ramaekers JG. A combined neurophysiological and behavioural study into the stimulating effects of fexofenadine on performance. J Psychopharmacol 2006; 20:49650.
  • 9
    Theunissen EL, Van Kroonenburgh MJ, Van Deursen JA, Blom-Coenjaerts C, Ramaekers JG. Stimulating effects of the antihistamine fexofenadine: testing the dopamine transporter hypothesis. Psychopharmacology 2006; 187:95102.
  • 10
    Tashiro M, Sakurada Y, Iwabuchi K et al. Central effects of fexofenadine and cetirizine: measurement of psychomotor performance, subjective sleepiness, and brain histamine H1-receptor occupancy using 11C-doxepin positron emission tomography. J Clin Pharmacol 2004; 44:890900.
  • 11
    Tashiro M, Mochizuki H, Sakurada Y et al. Brain histamine H1 receptor occupancy of orally administered antihistamines measured by positron emission tomography with (11)C-doxepin in a placebo-controlled crossover study design in healthy subjects: a comparison of olopatadine and ketotifen. Br J Clin Pharmacol 2006; 61:1626.
  • 12
    Mochizuki H, Kimura Y, Ishii K et al. Quantitative measurement of histamine H1 receptors in human brains by PET and [11C]doxepin. Nucl Med Biol 2004; 31:16571.
  • 13
    Yanai K, Tashiro M. The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Pharmacol Ther 2007; 113:115.
  • 14
    Mochizuki H, Tashiro M, Tagawa M et al. The effects of a sedative antihistamine, d-chlorpheniramine, on visuomotor spatial discrimination and regional brain activity as measured by positron emission tomography (PET). Hum Psychopharmacol 2002; 17:4138.
  • 15
    Tsujii T, Yamamoto E, Ohira T, Saito N, Watanabe S. Effects of sedative and non-sedative H1 antagonists on cognitive tasks: behavioral and near-infrared spectroscopy (NIRS) examinations. Psychopharmacology 2007; 194:8391.
  • 16
    Tsujii T, Masuda S, Yamamoto E et al. Effects of sedative and nonsedative antihistamines on prefrontal activity during verbal fluency task in young children: a near-infrared spectroscopy (NIRS) study. Psychopharmacology 2009; 207:12732.
  • 17
    Tsujii T, Yamamoto E, Ohira T, Takahashi T, Watanabe S. Antihistamine effects on prefrontal cortex activity during working memory process in preschool children: a near-infrared spectroscopy (NIRS) study. Neurosci Res 2010; 67:805.
  • 18
    Tsujii T, Watanabe S. Neural correlates of dual-task effect on belief-bias syllogistic reasoning: a near-infrared spectroscopy study. Brain Res 2009; 1287:11825.
  • 19
    Tsujii T, Watanabe S. Neural correlates of belief-bias reasoning under time pressure: a near-infrared spectroscopy study. Neuroimage 2010; 50:13206.
  • 20
    Tsujii T, Okada M, Watanabe S. Effects of aging on hemispheric asymmetry in inferior frontal cortex activity during belief-bias syllogistic reasoning: a near-infrared spectroscopy study. Behav Brain Res 2010; 210:17883.
  • 21
    Tsujii T, Masuda S, Akiyama T, Watanabe S. The role of inferior frontal cortex in belief-bias reasoning: an rTMS study. Neuropsychologia 2010; 48:20058.
  • 22
    Folstein MF, Luria R. Reliability, validity, and clinical application of the Visual Analogue Mood Scale. Psychol Med 1973; 3:47986.
  • 23
    Okamoto M, Dan H, Sakamoto K et al. Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage 2004; 21:99111.
  • 24
    Hindmarch I, Shamsi Z. Antihistamines: models to assess sedative properties, assessment of sedation, safety and other side effects. Clin Exp Allergy 1999; 3:13342.
  • 25
    Tsujii T, Yamamoto E, Masuda S, Watanabe S. Longitudinal study of spatial working memory development in young children. Neuroreport 2009; 20:75963.
  • 26
    Tsujimoto S, Yamamoto T, Kawaguchi H, Koizumi H, Sawaguchi T. Prefrontal cortical activation associated with working memory in adults and preschool children: an event-related optical topography study. Cereb Cortex 2004; 14:70312.
  • 27
    Choo WC, Lee WW, Venkatraman V, Sheu FS, Chee MW. Dissociation of cortical regions modulated by both working memory load and sleep deprivation and by sleep deprivation alone. Neuroimage 2005; 25:5787.
  • 28
    Mu Q, Nahas Z, Johnson KA et al. Decreased cortical response to verbal working memory following sleep deprivation. Sleep 2005; 28:5567.
  • 29
    Thomas RJ. Fatigue in the executive cortical network demonstrated in narcoleptics using functional magnetic resonance imaging – a preliminary study. Sleep Med 2005; 6:399406.
  • 30
    Ng KH, Chong D, Wong CK et al. Central nervous system side effects of first- and second-generation antihistamines in school children with perennial allergic rhinitis: a randomized, double-blind, placebo-controlled comparative study. Pediatrics 2004; 113:e11621.
  • 31
    Simons FE, Reggin JD, Roberts JR, Simons KJ. Benefit/risk ratio of the antihistamines (H1-receptor antagonists) terfenadine and chlorpheniramine in children. J Pediatr 1994; 124:97983.
  • 32
    Simons FE, Fraser TG, Reggin JD, Roberts JR, Simons KJ. Adverse central nervous system effects of older antihistamines in children. Pediatr Allergy Immunol 1996; 7:227.
  • 33
    Donchin E. Surprise!… Surprise? Psychophysiology 1981; 18:493513.
  • 34
    Yoshiura T, Zhong J, Shibata DK, Kwok WE, Shrier DA, Numaguchi Y. Functional MRI study of auditory and visual oddball tasks. Neuroreport 1999; 10:16838.
  • 35
    Clark VP, Fannon S, Lai S, Benson R, Bauer L. Responses to rare visual target and distractor stimuli using event-related fMRI. J Neurophysiol 2000; 83:31339.
  • 36
    Simons FEJ, Semus M, Goritz SS, Simons KJ. H1-antihistaminic activity of cetirizine and fexofenadine in allergic children. Pediatr Allergy Immunol 2003; 14:20711.
  • 37
    Simons FEJ, Simons KJ. Levocetirizine: pharmacokinetics and pharmacodynamics in children age 6 to 11 years. J Allergy Clin Immunol 2005; 116:35561.
  • 38
    Stevenson J, Cornah D, Evrard P et al. Long-term evaluation of the impact of the H1-receptor antagonist cetirizine on the behavioral, cognitive, and psychomotor development of very young children with atopic dermatitis. Pediatr Res 2002; 52:2517.