SEARCH

SEARCH BY CITATION

References

  • Al-Ghadyan AA, Cotlier E (1986) Rise in lens temperature on exposure to sunlight or high ambient temperature. Br. J. Ophthalmol. 70, 421426.
  • Augusteyn RC, Rosen AM, Borja D, Ziebarth NM, Parel JM (2006) Biometry of primate lenses during immersion in preservation media. Mol. Vis. 12, 740747.
  • Borchman D, Byrdwell WC, Yappert MC (1994) Regional and age-dependent differences in the phospholipid composition of human lens membranes. Invest. Ophthalmol. Vis. Sci. 35, 39383942.
  • Bours J, Fodisch HJ, Hockwin O (1987) Age-related changes in water and crystallin content of the fetal and adult human lens, demonstrated by a microsectioning technique. Ophthalmic Res. 19, 235239.
  • Brown NP (1974) The change in shape and internal form of the lens of the eye on accommodation. Exp. Eye Res. 15, 441459.
  • Bruckner R, Batschelet E, Hugenschmidt F (1986) The Basel longitudinal study on aging (1955–1978). Doc. Ophthalmol. 64, 235310.
  • Cheng R, Feng Q, Argirov OK, Ortwerth BJ (2004) Structure elucidation of a novel yellow chromophore from human lens protein. J. Biol. Chem. 279, 4544145449.
  • Coghlan SD, Augusteyn RC (1977) Changes in the distribution of proteins in the aging human lens. Exp. Eye Res. 25, 603611.
  • Coleman DJ (1970) Unified model for accommodative mechanism. Am. J. Ophthalmol. 69, 10631079.
  • Der Perng M, Wen SF, Van Den Ijssel P, Prescott AR, Quinlan RA (2004) Desmin aggregate formation by R120G αB-crystallin is caused by altered filament interactions and is dependent upon network status in cells. Mol. Biol. Cell 15, 23352346.
  • Derham BK, Harding JJ (1999) α-Crystallin as a molecular chaperone. Prog. Retin. Eye Res. 18, 463509.
  • Duane AJ (1912) Normal values of the accommodation of all ages. JAMA 59, 10101013.
  • Dubbelman M, Van der Heijde GL, Weeber HA, Vrensen GF (2003) Changes in the internal structure of the human crystalline lens with age and accommodation. Vision Res. 43, 23632375.
  • Eskeridge JB (1984) Review of ciliary muscle effort in presbyopia. Am. J. Optom. Physiol. Opt. 61, 133138.
  • Fisher R (1971) The elastic constants of the human lens. J. Physiol. 212, 147180.
  • Glasser A, Campbell MC (1999) Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vision Res. 39, 19912015.
  • Glasser A, Wendt M, Ostrin L (2006) Accommodative changes in lens diameter in rhesus monkeys. Invest. Ophthalmol. Vis. Sci. 47, 278286.
  • Harrington V, McCall S, Huynh S, Srivastava K, Srivastava OP (2004) Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Mol. Vis. 10, 476489.
  • Helmholtz H (1855) The accommodation of the eyes. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 1, 170.
  • Heys KR, Cram SL, Truscott RJW (2004) Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? Mol. Vis. 10, 956963.
  • Horwitz J (1992) α-Crystallin can function as a molecular chaperone. Proc. Natl Acad. Sci. USA 89, 1044910453.
  • Huang L, Grami V, Marrero Y, Tang D, Yappert MC, Rasi V, Borchman D (2005) Human lens phospholipid changes with age and cataract. Invest. Ophthalmol. Vis. Sci. 46, 16821689.
  • Koretz JF, Cook CA, Kaufman PL (1997) Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus. Invest. Ophthalmol. Vis. Sci. 38, 569578.
  • Koretz JF, Handelman GH (1988) How the human eye focuses. Sci. Am. 259, 9299.
  • Koretz JF, Handelman GH, Brown NP (1984) Analysis of human crystalline lens curvature as a function of accommodative state and age. Vision Res. 24, 11411151.
  • Korlimbinis A, Truscott RJW (2006) Identification of 3-Hydroxykynurenine bound to proteins in the human lens. A possible role in age-related nuclear cataract. Biochemistry 45, 19501960.
  • Krag S, Olsen T, Andreassen TT (1997) Biomechanical characteristics of the human anterior lens capsule in relation to age. Invest. Ophthalmol. Vis. Sci. 38, 357363.
  • Lahm D, Lee LK, Bettelheim FA (1985) Age dependence of freezable and nonfreezable water content of normal human lenses. Invest. Ophthalmol. Vis. Sci. 26, 11621165.
  • Lampi KJ, Ma Z, Hanson SRA, Azuma M, Shih M, Shearer TR, Smith DL, Smith JB, David LL (1998) Age-related changes in human lens crystallins identified by two-dimensional electrophoresis and mass spectrometry. Exp. Eye Res. 67, 3143.
  • Li LK, Roy D, Spector A (1986) Changes in lens protein in concentric fractions from individual normal human lenses. Curr. Eye Res. 5, 127135.
  • Masters PM, Bada JL, Zigler J, Jr (1977) Aspartic acid racemisation in the human lens during ageing and in cataract formation. Nature 268, 7173.
  • McFall-Ngai MJ, Ding L-L, Takemoto LJ, Horwitz J (1985) Spatial and temporal mapping of the age-related changes in human lens crystallins. Exp. Eye Res. 41, 745758.
  • McHaourab HS, Dodson EK, Koteiche HA (2002) Mechanism of chaperone function in small heat shock proteins. Two-mode binding of the excited states of T4 lysozyme mutants by αA-crystallin. J. Biol. Chem. 277, 4055740566.
  • Miranda MN (1979) The geographic factor in the onset of presbyopia. Trans. Am. Ophthalmol. Soc. 77, 603621.
  • Mitchell TW, Turner N, Hulbert AJ, Else PL, Hawley JA, Lee JS, Bruce CR, Blanksby SJ (2004) Exercise alters the profile of phospholipid molecular species in rat skeletal muscle. J. Appl. Physiol. 97, 18231829.
  • Pau H, Kranz J (1991) The increasing sclerosis of the human lens with age and its relevance to accommodation and presbyopia. Graefes Arch. Clin. Exp. Ophthalmol. 229, 294296.
  • Raman B, Ramakrishna T, Rao CM (1995) Temperature dependent chaperone-like activity of alpha-crystallin. FEBS Lett. 365, 133136.
  • Rao PV, Huang QL, Horwitz J, Zigler JS, Jr (1995) Evidence that α-crystallin prevents non-specific protein aggregation in the intact eye lens. Biochim. Biophys. Acta 1245, 439447.
  • Reddy GB, Das KP, Petrash JM, Surewicz WK (2000) Temperature-dependent chaperone activity and structural properties of human αA- and αB-crystallins. J. Biol. Chem. 275, 45654570.
  • Roy D, Spector A (1976a) Absence of low-molecular-weight α-crystallin in nuclear region of old human lenses. Proc. Natl Acad. Sci. USA 73, 34843487.
  • Roy D, Spector A (1976b) High molecular weight protein from human lenses. Exp. Eye Res. 22, 273279.
  • Schachar RA, Anderson D (1995) The mechanism of ciliary muscle function. Ann. Ophthalmol. 27, 126132.
  • Schachar RA, Black TD, Kash RL (1995) The mechanism of accommodation and presbyopia in the primate. Ann. Ophthalmol. 27.
  • Schachar RA, Pierscionek B (2007) Lens hardness not related to the age-related decline of accommodative amplitude. Mol. Vis. 13, 10101011.
  • Schwartz B (1965) Environmental temperature and the ocular temperature gradient. Arch. Ophthalmol. 74, 237243.
  • Sliney D (1986) Physical factors in cataractogenesis: ambient ultraviolet radiation and temperature. Invest. Ophthalmol. Vis. Sci. 27, 781790.
  • Strenk SA, Strenk LM, Koretz JF (2005) The mechanism of presbyopia. Prog. Retin. Eye Res. 24, 379393.
  • Stubbs CD, Smith AD (1984) The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim. Biophys. Acta 779, 89137.
  • Takemoto L (1995) Age-dependent cleavage at the C-terminal region of lens beta B2 crystallin. Exp. Eye Res. 61, 743748.
  • Treweek TM, Lindner RA, Mariani M, Carver JA (2000) The small heat-shock chaperone protein, α-crystallin, does not recognise stable molten globule state of cytosolic proteins. Biochim. Biophys. Acta 1481, 175188.
  • Weeber HA, Eckert G, Soergel F, Meyer CH, Pechhold W, Van Der Heijde RG (2005) Dynamic mechanical properties of human lenses. Exp. Eye Res. 80, 425434.
  • Wilmarth PA, Tanner S, Dasari S, Nagalla SR, Riviere MA, Bafna V, Pevzner PA, David LL (2006) Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: does deamidation contribute to crystallin insolubility? J. Proteome Res. 5, 25542564.
  • Xi J-h, Bai F, McGaha R, Andley UP (2006) α-Crystallin expression affects microtubule assembly and prevents their aggregation. FASEB J. 20, 846857.
  • Ziebarth NM, Wojcikiewicz EP, Manns F, Moy VT, Parel J (2007) Atomic force microscopy measurements of lens elasticity in monkey eyes. Mol. Vis. 13, 503510.