• aging;
  • cancer;
  • mouse models;
  • shelterin;
  • telomerase;
  • telomeres


Mammalian telomeres are formed by tandem repeats of the TTAGGG sequence bound by a specialized six-protein complex known as shelterin, which has fundamental roles in the regulation of telomere length and telomere capping. In the past, the study of mice genetically modified for telomerase components has been instrumental to demonstrate the role of telomere length in cancer and aging. Recent studies using genetically modified mice for shelterin proteins have highlighted an equally important role of telomere-bound proteins in cancer and aging, even in the presence of proficient telomerase activity and normal telomere length. In this review, we will focus on recent findings, suggesting a role of shelterin components in cancer and aging.