• Open Access

Accelerated aging phenotype in mice with conditional deficiency for mitochondrial superoxide dismutase in the connective tissue

Authors

Errata

This article is corrected by:

  1. Errata: Accelerated aging phenotype in mice with conditional deficiency for mitochondrial superoxide dismutase in the connective tissue Volume 10, Issue 5, 912, Article first published online: 14 September 2011

Karin Scharffetter-Kochanek, MD, Department of Dermatology and Allergic Diseases, University of Ulm, Maienweg 12, 89081 Ulm, Germany. Tel.: ++49 731 50057501; fax: ++49 731 50057502; e-mail:karin.scharffetter-kochanek@uniklinik-ulm.de

Summary

The free radical theory of aging postulates that the production of mitochondrial reactive oxygen species is the major determinant of aging and lifespan. Its role in aging of the connective tissue has not yet been established, even though the incidence of aging-related disorders in connective tissue-rich organs is high, causing major disability in the elderly. We have now addressed this question experimentally by creating mice with conditional deficiency of the mitochondrial manganese superoxide dismutase in fibroblasts and other mesenchyme-derived cells of connective tissues in all organs. Here, we have shown for the first time that the connective tissue-specific lack of superoxide anion detoxification in the mitochondria results in reduced lifespan and premature onset of aging-related phenotypes such as weight loss, skin atrophy, kyphosis (curvature of the spine), osteoporosis and muscle degeneration in mutant mice. Increase in p16INK4a, a robust in vivo marker for fibroblast aging, may contribute to the observed phenotype. This novel model is particularly suited to decipher the underlying mechanisms and to develop hopefully novel connective tissue-specific anti-aging strategies.

Ancillary