SEARCH

SEARCH BY CITATION

References

  • Anderson EJ, Neufer PD (2006) Type II skeletal myofibers possess unique properties that potentiate mitochondrial H2O2 generation. Am. J. Physiol. Cell Physiol. 290, C844C851.
  • Barrientos A, Moraes CT (1999) Titrating the effects of mitochondrial complex I impairment in the cell physiology. J. Biol. Chem. 274, 1618816197.
  • Beinert H, Ackrell BA, Vinogradov AD, Kearney EB, Singer TP (1977) Interrelations of reconstitution activity, reactions with electron acceptors, and iron-sulfur centers in succinate dehydrogenase. Arch. Biochem. Biophys. 182, 95106.
  • Birch-Machin MA, Turnbull DM (2001) Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues. Methods Cell Biol. 65, 97117.
  • Boveris A, Cadenas E (1975) Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett. 54, 311314.
  • Bulteau AL, Ikeda-Saito M, Szweda LI (2003) Redox-dependent modulation of aconitase activity in intact mitochondria. Biochemistry 42, 1484614855.
  • Burkholder TJ, Fingado B, Baron S, Lieber RL (1994) Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. J. Morphol. 221, 177190.
  • Cecchini G, Schröder I, Gunsalus RP, Maklashina E (2002) Succinate dehydrogenase and fumarate reductase from Escherichia coli. Biochim. Biophys. Acta 1553, 140157.
  • Chalier F, Tordo P (2002) 5-(Diisopropoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide, DIPPMPO, a crystalline analog of the nitrone DEPMPO: synthesis and spin trapping properties. J. Chem. Soc. Perkin Trans. 2, 21102117.
  • Conley KE, Jubrias SA, Amara CE, Marcinek DJ (2007) Mitochondrial dysfunction: impact on exercise performance and cellular aging. Exerc. Sport Sci. Rev. 35, 4349.
  • Dahia PL, Ross KN, Wright ME, Hayashida CY, Santagata S, Barontini M, Kung AL, Sanso G, Powers JF, Tischler AS, Hodin R, Heitritter S, Moore F, Dluhy R, Sosa JA, Ocal IT, Benn DE, Marsh DJ, Robinson BG, Schneider K, Garber J, Arum SM, Korbonits M, Grossman A, Pigny P, Toledo SP, Nosé V, Li C, Stiles CD (2005) A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 1, 7280.
  • Feng J, Navratil M, Thompson LV, Arriaga E (2008) A principal component analysis reveals age-related and muscle-type-related differences in protein carbonyl profiles of muscle mitochondria. J. Gerontol. A Biol. Sci. Med. Sci. 63, 12771288.
  • Fulle S, Protasi F, Di Tano G, Pietrangelo T, Beltramin A, Boncompagni S, Vecchiet L, Fano G (2004) The contribution of reactive oxygen species to sarcopenia and muscle ageing. Exp. Gerontol. 39, 1724.
  • Gardner PR (2002) Aconitase: sensitive target and measure of superoxide. Methods Enzymol. 349, 923.
  • Gardner PR, Fridovich I (1991) Superoxide sensitivity of the Escherichia coli aconitase. J. Biol. Chem. 266, 1932819333.
  • Gardner PR, Nguyen DH, White CW (1994) Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc. Natl. Acad. Sci. 91, 1224812252.
  • Gardner PR, Raineri I, Epstein LB, White CW (1995) Superoxide radical and iron modulate aconitase activity in mammalian cells. J. Biol. Chem. 270, 1339913405.
  • Hagerhall C (1997) Succinate: quinone oxidoreductases. Variations on a conserved theme. Biochim. Biophys. Acta 1320, 107141.
  • Hallauer PL, Hastings KE (2002) TnIfast IRE enhancer: multistep developmental regulation during skeletal muscle fiber type differentiation. Dev. Dyn. 224, 422431.
  • Hinerfeld D, Traini MD, Weinberger RP, Cochran B, Doctrow SR, Harry J, Melov S (2004) Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J. Neurochem. 88, 657667.
  • Huang TT, Naeemuddin M, Elchuri S, Yamaguchi M, Kozy HM, Carlson EJ, Epstein CJ (2006) Genetic modifiers of the phenotype of mice deficient in mitochondrial superoxide dismutase. Hum. Mol. Genet. 15, 11871194.
  • Hynes J, Marroquin LD, Ogurtsov VI, Christiansen KN, Stevens GJ, Papkovsky DB, Will Y (2006) Investigation of drug-induced mitochondrial toxicity using fluorescence-based oxygen-sensitive probes. Toxicol. Sci. 92, 186200.
  • Jakobsson F, Borg K, Edstrom L (1990) Fibre-type composition, structure and cytoskeletal protein location of fibres in anterior tibial muscle. Acta Neuropathol. 80, 459468.
  • King KL, Stanley WC, Rosca M, Kerner J, Hoppel CL, Febbraio M (2007) Fatty acid oxidation in cardiac and skeletal muscle mitochondria is unaffected by deletion of CD36. Arch. Biochem. Biophys. 467, 234238.
  • Kuwahara H, Horie T, Ishikawa S, Tsuda C, Kawakami S, Noda Y, Kaneko T, Tahara S, Tachibana T, Okabe M, Melki J, Takano R, Toda T, Morikawa D, Nojiri H, Kurosawa H, Shirasawa T, Shimizu T (2010) Oxidative stress in skeletal muscle causes severe disturbance of exercise activity without muscle atrophy. Free Radic. Biol. Med 48(9): 12521262.
  • Larsson L, Sjodin B, Karlsson J (1978) Muscle strength and speed of movement in relation to age and muscle morphology. Acta Physiol. Scand. 103, 3139.
  • Lexell J, Taylor T (1991) Variability in muscle fiber areas in whole human quadriceps muscle: effects of increasing age. J. Anat. 174, 239249.
  • Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11, 376381.
  • Longo VD, Liou LL, Valentine JS, Gralla EB (1999) Mitochondrial superoxide decreases yeast survival in stationary phase. Arch. Biochem. Biophys. 365, 131142.
  • Lopez ME, Van Zeeland NL, Dahl DB, Weindruch R, Aiken JM (2000) Cellular phenotypes of age-associated skeletal muscle mitochondrial abnormalities in rhesus monkeys. Mutat. Res. 452, 123138.
  • Lustgarten MS, Jang YC, Liu Y, Muller FL, Qi W, Steinhelper M, Shimizu T, Shirasawa T, Bhattacharya A, Richardson A, Van Remmen H (2009) Conditional knockout of Mn-SOD targeted to type IIB skeletal muscle fibers increases oxidative stress and is sufficient to alter aerobic exercise capacity. Am. J. Physiol. Cell Physiol. 297, C1520C1532.
  • Mansouri A, Muller FL, Liu Y, Ng R, Faulkner J, Hamilton M, Richardson A, Huang TT, Epstein CJ, Van Remmen H (2006) Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging. Mech. Ageing Dev. 127, 298306.
  • Marcinek DJ, Schenkman KA, Ciesielski WA, Lee D, Conley KE (2005) Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle. J. Physiol. 569(Pt 2), 467473.
  • Mazat JP, Rossignol R, Malgat M, Rocher C, Faustin B, Letellier T (2001) What do mitochondrial diseases teach us about normal mitochondrial functions that we already knew: threshold expression of mitochondrial defects. Biochim. Biophys. Acta 1504, 2030.
  • Muller FL, Song W, Jang YC, Liu Y, Sabia M, Richardson A, Van Remmen H (2007) Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R1159R1168.
  • Nachlas MM, Tsou KC, De Souza E, Cheng CS, Seligman AM (1957) Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J. Histochem. Cytochem. 5, 420436.
  • Nojiri H, Shimizu T, Funakoshi M, Yamaguchi O, Zhou H, Kawakami S, Ohta Y, Sami M, Tachibana T, Ishikawa H, Kurosawa H, Kahn RC, Otsu K, Shirasawa T (2006) Oxidative stress causes heart failure with impaired mitochondrial respiration. J. Biol. Chem. 281, 3378933801.
  • Patel M, Day BJ, Crapo JD, Fridovich I, McNamara JO (1996) Requirement for superoxide in excitotoxic cell death. Neuron 16, 4555.
  • Pette D, Staron RS (1990) Cellular and molecular diversities of mammalian skeletal muscle fibers”. Rev. Physiol. Biochem. Pharmacol. 116, 176.
  • Picard M, Csukly K, Robillard ME, Godin R, Ascah A, Bourcier-Lucas C, Burelle Y (2008) Resistance to Ca21-induced opening of the permeability transition pore differs in mitochondria from glycolytic and oxidative muscles. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R659R668.
  • Powell CS, Jackson RM (2003) Mitochondrial complex I, aconitase, and succinate dehydrogenase during hypoxia-reoxygenation: modulation of enzyme activities by MnSOD. Am. J. Physiol. Lung Cell. Mol. Physiol. 285, L189L198.
  • Robinson Jr JB, Brent JB, Sumegi B, Srere PA (1987). An enzymatic approach to the study of the Krebs tricarboxylic acid cycle. In: Mitochondria: A Practical Approach (Darley-Usmar VM, Rickwood D, Wilson MT, Eds; IRL Press Oxford, Washington D.C.); 153169.
  • Schiaffino S, Reggiani C (1994) Myosin isoforms in mammalian skeletal muscle. J. Appl. Physiol. 77, 493501.
  • Schiaffino S, Saggin L, Viel A, Ausoni S, Sartore S, Gorza L (1986). Muscle fiber types identified by monoclonal antibodies to myosin heavy chains. in: Biochemical Aspects of Physical Exercise (Benzi G, Packer L, Siliprandi N, eds). Amsterdam: Elsevier, pp. 2734.
  • Seligman AM (1968) Histochemistry, theoretical and applied. In: Histochemistry, theoretical and applied. vol. 2, 3rd edn, (Everson Pearse AG, ed). Baltimore, MD: Williams & Wilkins, Baltimore, 1972.
  • Shan X, Chang Y, Lin CL (2007) Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression. FASEB J. 21, 27532764.
  • Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc. Natl. Acad. Sci. 102, 56185623.
  • Taicher GZ, Tinsley FC, Reiderman A, Heiman ML (2003) Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal. Bioanal. Chem. 377, 9901002.
  • Tinsley FC, Taicher GZ, Heiman ML (2004) Evaluation of a quantitative magnetic resonance method for mouse whole body composition analysis”. Obes. Res. 12, 150160.
  • Tomonaga M (1977) Histochemical and ultrastructural changes in senile human skeletal Muscle. J. Am. Geriatr. Soc. 25, 125131.
  • Van Remmen H, Williams MD, Guo Z, Estlack L, Yang H, Carlson EJ, Epstein CJ, Huang TT, Richardson A (2001) Knockout mice heterozygous for Sod2 show alterations in cardiac mitochondrial function and apoptosis. Am. J. Physiol. Heart Circ. Physiol. 281, H1422H1432.
  • Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang TT, Nelson J, Strong R, Richardson A (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16, 2937.
  • Wanagat J, Cao Z, Pathare P, Aiken JM (2001) Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J. 15, 322332.
  • Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies KJ (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J. Biol. Chem. 265, 1633016336.