SEARCH

SEARCH BY CITATION

Keywords:

  • Loamy sand;
  • compost;
  • porosity;
  • water retention;
  • soil physical quality;
  • index

Abstract

The objective of this study was to investigate the effects of the long-term addition of three compost types (vegetable, fruit and yard waste compost – VFYW, garden waste compost – GW and spent mushroom compost – SM) on the physical properties of a sandy soil and to quantify any such effects using indicators of soil physical quality. Soil samples were taken from a field with annual compost applications of 30 m3/ha for 10 yr and various physico-chemical analyses were undertaken. Results show a significant increase in soil organic carbon (21%) with the VFYW and GW compost types. With SM, soil organic carbon increased by 16%. Increased soil macroporosity and water content at saturation with a corresponding decrease in bulk density were observed for all compost types. However, quantification of these improvements using existing soil physical quality indicators such as the ‘S-index’, soil air capacity and matrix porosity gave mixed results showing that these indices perform poorly when applied to sandy soils. It is concluded that the long-term application of compost does not significantly improve the physical properties of sandy soils, but the absence of adverse effects suggests that these soils are a viable disposal option for these composts, but new indices of quality are needed for the proper characterization of sandy soils.