• 1
    Agrafiotis, D.K., 2001. Multiobjective optimization of combinatorial libraries. IBM Journal of Research and Development 45, 3/4, 545566.
  • 2
    Al-Yamani, A., Sait, S., Youssef, H., 2002. Parallelizing tabu search on a cluster of heterogeneous workstations. Journal of Heuristics 8, 3, 277304.
  • 3
    Alba, E., Tomassini, M., 2002. Parallelism and evolutionary algorithms. IEEE Transactions on Evolutionary Computation 6, 5, 443462.
  • 4
    Arnold, D.V., 2003. A comparison of evolution strategies with other direct search methods in the presence of noise. Computational Optimization and Applications 24, 135159.
  • 5
    Babbar, M., Lakshmikantha, A., Goldberg, D.E., 2003. A modified NSGA-II to solve noisy multiobjective problems. In Cantü-Paz, E., et al. (eds), Genetic and Evolutionary Computation Conference (GECCO'2003), late breaking papers, Vol. 2723 of Lecture Notes in Computer Science. Springer, Chicago, IL, pp. 2127.
  • 6
    Basseur, M., Burke, E.K., 2007. Indicator-based multiobjective local search. In IEEE Congress on Evolutionary Computation (CEC 2007). Singapore, pp. 31003107.
  • 7
    Basseur, M., Lemesre, J., Talbi, E.-G., Dhaenens, C., 2004. Cooperation between branch and bound and evolutionary approaches to solve a biobjective flow shop problem. In Workshop on Evolutionary Algorithms (WEA'04), Vol. 3059, pp. 7286.
  • 8
    Basseur, M., Seynhaeve, F., Talbi, E-G., 2003. Adaptive mechanisms for multi-objective evolutionary algorithms. In Congress on Engineering in System Application CESA'03, Lille, France, pp. 7286.
  • 9
    Basseur, M., Seynhaeve, F., Talbi, E-G., 2005. Path relinking in pareto multi-objective genetic algorithms. In Coello Coello, C.A., Aguirre, A.H., Zitzler, E. (eds), Evolutionary Multi-Criterion Optimization, EMO'2005, Vol. 3410 of Lecture Notes in Computer Science. Springer-Verlag, Guanajuato, Mexico, pp. 120134.
  • 10
    Basseur, M., Zitzler, E., 2006. Handling uncertainty in indicator-based multiobjective optimization. International Journal of Computational Intelligence Research 2, 3, 255–272.
  • 11
    Beausoleil, R.P., 2001. Mutiple criteria scatter search. In 4th Metaheuristics International Conference (MIC'01)), Porto, Portugal, pp. 539544.
  • 12
    Beausoleil, R.P., 2006. “MOSS”, multiobjective scatter search applied to non-linear multiple criteria optimization. European Journal of Operational Research 169, 2, 426449.
  • 13
    Beausoleil, R., Baldoquin, G., Montejo, R., 2008. Multi-start and path relinking methods to deal with multiobjective knapsack problems. Annals of Operations Research 157, 1, 105133.
  • 14
    Blum, C., Roli, A., 2003. Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Computing Surveys 35, 3, 268308.
  • 15
    Büche, D., Stoll, P., Koumoutsakos, P., 2001. An evolutionary algorithm for multi-objective optimization of combustion processes. Technical Report, Center for Turbulence Research, Annual Research Briefs.
  • 16
    Bui, L.T., Abbass, H.A., Essam, D., 2005. Fitness inheritance for noisy evolutionary multi-objective optimization. In Beyer, H.-G., O'Reilly, U.-M. (eds) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '05). ACM, Washington, DC, pp. 779785.
  • 17
    Burke, E., Cowling, P., Landa Silva, J., Petrovic, S., 2001. Combining hybrid metaheuristics and populations for the multiobjective optimisation of space allocation problems. In Proceedings of GECCO 2001. Morgan Kaufmann, San Francisco, CL, pp. 12521259.
  • 18
    Burke, E. K., Kendall, G., Newall, J., Hart, E., Ross, P., Schulemburg, S., 2003. Hyper-heuristics: An emerging direction in modern search technology, Handbook of Metaheuristics. Kluwer Academic Publishersm, Dordrecht.
  • 19
    Cantú-Paz, E., 2000. Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Dordrecht.
  • 20
    Carraway, R.L., Morin, T.L., Moskowitz, H., 1990. Generalized dynamic programming for multicriteria optimization. European Journal of Operational Research 44, 95104.
  • 21
    Chaiyaratana, N., Zalzala, A., 1999. Hybridisation of neural networks and genetic algorithms for time-optimal control. In Congress on Evolutionary Computation (CEC'99), Vol. 1. IEEE Service Center, pp. 389396.
  • 22
    Chang, C.S., Huang, J.S., 1998. Optimal multiobjective SVC planning for voltage stability enhancement. IEE Proceedings on Generation, Transmission and Distribution 145, 2, 203209.
  • 23
    Chipperfield, A.J., Whidborne, J.F., Fleming, P.J., 1999. Evolutionary Algorithms and Simulated Annealing for MCDM, chapter 16. Kluwer Academic Publishing, Boston, MA.
  • 24
    Coello, C.A., Reyes, M., 2004. A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In MICAI 2004, LNAI 2972, pp. 688697.
  • 25
    Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B., 2002. Evolutionary algorithms for solving multi-objective problems. Genetic Algorithms and Evolutionary Computation. Kluwer Academic Publishers, Dordrecht.
  • 26
    Corberán, A., Fernández, E., Laguna, M., Martí, R., 2002. Heuristic solutions to the problem of routing school buses with multiple objectives. Journal of the Operational Research Society 53, 4, 427435.
  • 27
    Crainic, T.G., Toulouse, M., 2003. Parallel strategies for metaheuristics. In Glover, F.W., Kochenberger, G.A. (eds), Handbook of Metaheuristics.
  • 28
    Cung, V.-D., Martins, S.L., Ribeiro, C.C., Roucairol, C., 2003. Strategies for the parallel implementation of metaheuristics. In Ribeiro, C.C., Hansen, P. (eds), Essays and Surveys in Metaheuristics. Kluwer, Dordrecht pp. 263308.
  • 29
    Czyzack, P., Jaszkiewicz, A., 1998. Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis 7, 1, 3447.
  • 30
    de Toro, F., Ortega, J., Ros, E., Mota, S., Paechter, B., Martín, J.M., 2004. PSFGA: parallel processing and evolutionary computation for multiobjective optimisation. Parallel Computing 30, 5–6, 721739.
  • 31
    Deb, K., 2001. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, New York.
  • 32
    Deb, K., Goel, T., 2001. A hybrid multi-objective evolutionary approach to engineering shape design. In Zitzler, E., Deb, K., Thiele, L., Coello Coello, C., and Corne, David (eds), First International Conference on Evolutionary Multi-Criterion Optimization, Vol. 1993 of Lecture Notes in Computer Science, Zurich, Switzerland, pp. 385399.
  • 33
    Deb, K., Gupta, H., 2005. Searching for robust pareto-optimal solutions in multi-objective optimization. In Coello Coello, C.A., Aguirre, A.H., Zitzler, E. (eds) Conference on Evolutionary Multi-Criterion Optimization (EMO'05), Vol. 3410 of Lecture Notes in Computer Science (LNCS). Springer-Verlag, Guanajuato, Mexico, pp. 150164.
  • 34
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 2, 182197.
  • 35
    Delisle, P., Krajecki, M., Gravel, M., Gagn, C., 2001. Parallel implementation of an ant colony optimization metaheuristic with openmp. In 3rd European workshop on OpenMP (EWOMP'01), pp. 812.
  • 36
    Doerner, K., Gutjahr, W., Hartl, R., Strauss, C., 2002. Pareto ant colony optimization: a metaheuristic approach to multiobjective portfolio selection. In Proceedings of the 4th Metaheuristics International Conference, Porto, pp. 243248.
  • 37
    Dorigo, M., Blum, C., 2005. Ant colony optimization theory: a survey. Theoretical Computer Science 344, 2–3, 243278.
  • 38
    Duarte, S., Barán, B., 2001. Multiobjective network design optimisation using parallel evolutionary algorithms. In XXVII Conferencia Latinoamericana de Informática CLEI'2001.
  • 39
    Dumitrescu, I., Stützle, T., 2003. Combinations of local search and exact algorithms. In Raidl, G., et al. (eds) Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2003, Vol. 2611 of Lecture Notes in Computer Science. Springer Verlag, Berlin, Germany, pp. 211224.
  • 40
    Burke, E.K., Landa Silva, J.D., Soubeiga, E., 2003. Hyperheuristic approaches for multiobjective optimisation. In 5th Metaheuristics International Conference (MIC 2003), Kyoto, Japan.
  • 41
    Foster, I., Kesselman, C., 1997. Globus: A metacomputing infrastructure toolkit. International Journal of Supercomputer Applications and High Performance Computing 11, 2, 115128.
  • 42
    Foster, I., Kesselman, K., 2003. The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann.
  • 43
    Gambardella, L.M., Taillard, E., Agazzi, G., 1999. MACS-VRPTW: A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows. McGraw-Hill Ltd., UK, Maidenhead, UK, England, pp. 6376.
  • 44
    Gandibleux, X., Ehrgott, M., 2005. 1984–2004 20 years of multiobjective metaheuristics but what about the solution of combinatorial problems with multiple objectives? In Hernández Aguirre, A., Coello Coello, C., Zitzler, E. (eds), Evolutionary Multi-Criterion Optimization: Third International Conference, EMO 2005. Springer-Verlag, Guanajuato, Mexico, pp. 3346.
  • 45
    Gandibleux, X., Mezdaoui, N., Freville, A., Caballero, R., Ruiz, F., Steuer, R., 1997. A tabu search procedure to solve multiobjective combinatorial optimization problems. In Advances in Multiple Objective and Goal Programming, Vol. 455 of Lecture Notes in Economics and Mathematical Systems, pp. 291300.
  • 46
    Gen, M., Lin, L., 2004. Multiobjective hybrid genetic algorithm for bicriteria network design problem. In The 8th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Cairns, Australia, pp. 7382.
  • 47
    Glover, F., Laguna, M., Martí, R., 2000. Fundamentals of scatter search and path relinking. Control and Cybernetics 29, 3, 653684.
  • 48
    Glover, F., Laguna, M., Martí, R., 2003. Scatter search. In Ghosh, Ashish, Tsutsui, Shigeyosh (eds), Advances in Evolutionary Computing: Theory and Applications. Springer.
  • 49
    Golovkin, I.E., Mancini, R.C., Louis, S.J., 2000. Parallel implementation of niched pareto genetic algorithm code for X-Ray plasma spectroscopy. In Late-Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference.
  • 50
    Hansen, M.P., 1997. Tabu search in multiobjective optimisation: MOTS. In Proceedings of the 13th International Conference on Multiple Criteria Decision Making (MCDM'97). Cape Town, South Africa.
  • 51
    Hanseni, M.P., 2000. Tabu search for multiobjective combinatorial optimization: Tamoco. Control and Cybernetics, 29, 3, 799818.
  • 52
    Herrera, F., Lozano, M., Molina, D., 2006. Continuous scatter search: an analysis of the integration of some combination methods and improvement strategies. European Journal of Operational Research 169, 450476.
  • 53
    Hertz, A., Jaumard, B., Ribeiro, C.C., Formosinho Filho, W.P., 1994. A multi-criteria tabu search approach to cell formation problems in group technology with multiple objectives. RAIRO Recherche Opérationnelle/Operations Research 28, 3, 303328.
  • 54
    Horn, J., Nafpliotis, N., 1993. Multiobjective optimization using the niched pareto genetic algorithm. IlliGAL Report 93005, Illinois Genetic Algorithm Laboratory, University of Illinois at Urbana-Champaign, IL.
  • 55
    Hughes, E., 2001. Evolutionary multi-objective ranking with uncertainty and noise. In EMO'01: Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization. Springer-Verlag, London, UK, pp. 329343.
  • 56
    Iredi, S., Merkle, D., Middendorf, M., 2001. Bi-criterion optimization with multi colony ant algorithms. In Conference on Evolutionary Multi-Criterion Optimization (EMO'01), Vol. 1993 of Lecture Notes in Computer Science (LNCS), pp. 358372.
  • 57
    Ishibuchi, H., Murata, T., 1998. Multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Transactions on Systems, Man. and Cybernetics—Part C: Applications and Reviews 28, 3, 392403.
  • 58
    Janson, S., Merkle, D., Middendorf, M., 2008. Molecular docking with multi-objective particle swarm optimization. Applied Soft Computing 8, 1, 666675.
  • 59
    Jaszkiewicz, A., 1998. Genetic local search for multiple objective combinatorial optimization. Technical Report RA-014/98, Institute of Computing Science, Poznan University of Technology.
  • 60
    Jaszkiewicz, J., 2005. Path relinking for multiple objective combinatorial optimization. tsp case study. In Proceedings of The 16th Mini - EURO Conference and 10th Meeting of EWGT (Euro Working Group Transportation).
  • 61
    Jin, Y., Branke, J., 2005. Evolutionary optimization in uncertain environments—a survey. IEEE Transactions on evolutionary computation 9, 3, 303317.
  • 62
    Jozefowiez, N., 2004. Modélisation et résolution approchée de problèmes de tournées multi-objectif. Ph.D. Thesis, University of Lille, Lille, France.
  • 63
    Jozefowiez, N., Semet, F., Talbi, E-G., 2002. Parallel and hybrid models for multi-objective optimization: application to the vehicle routing problem. In Guervos, J., Adamidis, P., Beyer, H-G., Fernández-Villacanas, J-L., Schwefel, H-P. (eds) Parallel Problem Solving from Nature (PPSN VII), Vol. 2439 of Lecture Notes in Computer Science. Springer-Verlag, Granada, Spain, pp. 271280.
  • 64
    Karasakal, E.K., Köksalan, M., 2000. A simulated annealing approach to bicriteria scheduling problems on a single machine. Journal of Heuristics 6, 3, 311327.
  • 65
    Kennedy, J., Eberhart, R.C., 1995. Particle swarm optimization. In IEEE International Conference on Neural Networks. Piscataway, NJ, pp. 19421948.
  • 66
    Knowles, J., Corne, D., 1999. The pareto archived evolution strategy: a new baseline algorithm for multiobjective optimization. In Proceedings of the 1999 Congress on Evolutionary Computation. IEEE Press, Piscataway, NJ, pp. 9105.
  • 67
    Li, X., 2004. Better spread and convergence: particle swarm multiobjective optimization using the maximin fitness function. In Deb, Kalyanmoy, et al. (eds), Genetic and Evolutionary Computation Conference (GECCO 2004), Vol. 3102 of Lecture Notes in Computer Science. Springer-Verlag, Seattle, Washington, USA.
  • 68
    Liefooghe, A., Mesmoudi, S., Humeau, J., Jourdanand El-Ghazali Talbi, L., 2009. A study on dominance-based local search approaches for multiobjective combinatorial optimization. In Second International Workshop on Engineering Stochastic Local Search Algorithms: Designing, Implementing and Analyzing Effective Heuristics (SLS 2009), Vol. 5752 of Lecture Notes in Computer Science, Brussels, Belgium, pp. 120124.
  • 69
    López-Ibáñez, M., Stützle, T., 2010. Automatic configuration of multi-objective ACO algorithms. In Seventh International Conference on Swarm Intelligence (ANTS'2010), pp. 95106.
  • 70
    Luna, F., Nebro, A. J., Alba, E., 2006. Observations in using grid-enabled technologies for solving multi-objective optimization problems. Parallel Computing 32, 4–6, 377393.
  • 71
    Mäkinen, R.A.E., Neittaanmäki, P., Periaux, J., Sefrioui, M., Toivanen, J., 1996. Parallel genetic solution for multobjective MDO. In Parallel CFD'96 Conference, pp. 352359.
  • 72
    Mariano, C.E., Morales, E., 1999. MOAQ and ANT-Q algorithm for multiple objective optimization problems. In Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, FL, pp. 894901.
  • 73
    Molina, J., Laguna, M., Martí, R., Caballero, R., 2005. Sspmo: a scatter search procedure for non-linear multiobjective optimization. INFORMS Journal on Computing 18, 4.
  • 74
    Nebro, A.J., Luna, F., Alba, E., Beham, A., Dorronsoro, B., 2006. a bYSS: Adapting scatter search for multiobjective optimization. Technical Report ITI-2006-2, Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, E.T.S.I. Informática, Campus de Teatinos.
  • 75
    Nebro, A. J., Luna, F., Alba, E., 2005. New ideas in applying scatter search to multiobjective optimization. In Coello, C.A., Hernández, A., Zitler, E. (eds) EMO 2005, Vol. 3410 of LNCS, pp. 443458.
  • 76
    Nebro, A. J., Luna, F., Talbi, E-G., Alba, E., 2005. Parallel multiobjective optimization. In Alba, Enrique (ed), Parallel Metaheuristics. Wiley, pp. 371394.
  • 77
    Ono, S., Nakayama, S., 2009. Multi-objective particle swarm optimization for robust optimization and its hybridization with gradient search. In IEEE Congress on Evolutionary Computation, CEC '09, pp. 16291636.
  • 78
    Pareto, V., 1896. Cours d'Economie Politique. Rouge, Lausanne, Switzerland.
  • 79
    Parsopoulos, K.E., Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N., 2004. Vector evaluated differential evolution for multiobjective optimization. In Proc. of the IEEE 2004 Congress on Evolutionary Computation (CEC 2004).
  • 80
    Pasia, J., Aguirre, H., Tanaka, K., 2010. Path relinking on many-objective nk-landscapes. In Parallel Problem Solving from Nature PPSN XI, Vol. 6238 of Lecture Notes in Computer Science, pp. 677686.
  • 81
    Puchinger, J., Raidl, G.R., 2005. Combining metaheuristics and exact algorithms in combinatorial optimization: a survey and classification. In Proceedings of the First International Work-Conference on the Interplay Between Natural and Artificial Computation, Vol. 3562 of LNCS. Springer, pp. 4153.
  • 82
    Radtke, P.W.W., Oliveira, L.S., Sabouring, R., Wong, T., 2003. Intelligent zoning design using multi-objective evolutionary algorithms. In Proc. of the Seventh Int. Conf. on Document Analysis and Recognition (ICDAR 2003), pp. 824828.
  • 83
    Reyes-Sierra, M., Coello C., Carlos A., 2006. Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International Journal of Computational Intelligence Research 2, 287308.
  • 84
    Reyes-Sierra, M., Coello, C. C., 2005. Improving pso-based multi-objective optimization using crowding, mutation and ε-dominance. In Coello, C.A., Hernández, A., Zitler, E. (eds), Third International Conference on Evolutionary MultiCriterion Optimization, EMO 2005, Vol. 3410 of Lecture Notes in Computer Science. Springer, pp. 505519.
  • 85
    Rowe, J., Vinsen, K., Marvin, N., 1996. Parallel GAs for multiobjective functions. In Proc. of the 2nd Nordic Workshop on Genetic Algorithms and Their Applications (2NWGA), pp. 6170.
  • 86
    Sakawa, M., 2001. Genetic Algorithms and Fuzzy Multiobjective Optimization. Operations Research/Computer Science Interfaces Series. Springer.
  • 87
    Schaffer, J.D., 1985. Multiple objective optimization with vector evaluated genetic algorithms. In Grefenstette, J.J. (ed) ICGA International Confereence on Genetic Algorithms. Lawrence Erlbaum, pp. 93100.
  • 88
    Sen, T., Raiszadeh, M.E., Dileepan, P., 1988. A branch and bound approach to the bicriterion scheduling problem involving total flowtime and range of lateness. Management Science 34, 2, 254260.
  • 89
    Serafini, P., 1992. Simulated annealing for multiple objective optimization problems. In Proceedings of the Tenth International Conference on Multiple Criteria Decision Making, Taipei, Taiwan, Vol. 1, pp. 8796.
  • 90
    Smith, K., Everson, R., Fieldsend, J., Murphy, C., Misra, R., 2008. Dominance-based multiobjective simulated annealing. IEEE Transactions on Evolutionary Computation 12, 3, 323342.
  • 91
    Stewart, B.S., White, C.C., 1991. Multiobjective A*. Journal of the ACM 38, 4, 775814.
  • 92
    Talbi, E-G., 2002. A taxonomy of hybrid metaheuristics. Journal of Heuristics 8, 541564.
  • 93
    Tan, K. C., Goh, C. K., 2008. Handling uncertainties in evolutionary multi-objective optimization. In Proceedings of the 2008 IEEE world conference on Computational intelligence: research frontiers, WCCI'08. Springer-Verlag, Berlin, Heidelberg, pp. 262292.
  • 94
    Teich, J., 2001. Pareto-front exploration with uncertain objectives. In Conference on Evolutionary Multi-Criterion Optimization (EMO'01), Vol. 1993 of Lecture Notes in Computer Science (LNCS), pp. 314328.
  • 95
    T'kindt, V., Monmarché, N., Tercinet, F., Laugt, D., 2002. An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem. European Journal of Operational Research 142, 2, 250257.
  • 96
    Tomassini, M., 2005. Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time. Natural Computing Series. Springer-Verlag, Heidelberg.
  • 97
    Ulungu, E.L., Teghem, J., Fortemps, P., Tuyttens, D., 1999. MOSA method: a tool for solving multiobjective combinatorial optimization problems. Journal of Multi-Criteria Decision Analysis 8, 4, 221236.
  • 98
    van Veldhuizen, D. A., Zydallis, J. B., Lamont, G. B., 2003. Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Trans. Evolutionary Computation 7, 2, 144173.
  • 99
    Visée, M., Teghem, J., Pirlot, M., Ulungu, E.L., 1998. Two-phases method and branch and bound procedures to solve knapsack problem. Journal of Global Optimization 12, 139155.
  • 100
    Watanabe, S., Hiroyasu, T., Miki, M., 2001. Parallel evolutionary multi-criterion optimization for mobile telecommunication networks optimization. In Proc. of the EUROGEN'2001, pp. 167172.
  • 101
    Zitzler, E., Künzli, S., 2004. Indicator-based selection in multiobjective search. In Proc. 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII), Birmingham, UK, pp. 832842.
  • 102
    Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the strength pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.