SEARCH

SEARCH BY CITATION

References

  • ALLARD, B. and TEMPLIER, J. 2000. Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry, 54, 369380.
  • AROURI, K., GREENWOOD, P. F. and WALTER, M. R. 2000. Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation. Organic Geochemistry, 31, 7589.
  • AROURI, K., GREENWOOD, P. F. and WALTER, M. R. 1999. A possible chlorophycean affinity of some Neoproterozoic acritarchs. Organic Geochemistry, 30, 13231337.
  • BENGTSON, S. 2004. Tracing metazoan roots in the fossil record. 289300. In LEGAKIS, Sfenthourakis, S., Polymeni, R. and Thessalou-Legaki, M. (eds). The new panorama of animal evolution. PENSOFT Publishers Sofia, Moscow, 738 pp.
  • BOLD, H. C. and WYNNE, M. J. 1985. Introduction to the algae, Second Edition. Prentice- Hall, Inc., Englewood Cliffs, NJ, 720 pp.
  • BUTTERFIELD, N. J. 2005. Probable Proterozoic fungi. Paleobiology, 31, 165182.
  • BUTTERFIELD, N. J., KNOLL, A. H. and SWEET, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 34, 84 pp.
  • CANFIELD, D. E., POULTON, S. W. and NARBONNE, G. M. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315, 9295.
  • CAVALIER-SMITH, T. 2007. Evolution and relationships of algae: major branches of the tree of life. 2155. In BODIE, J. and LEWIS, J. (eds). Unravelling the algae, the past, present, and future of algal systematics. Natural History Museum. The Systematics Association Special Volume Series 75, CRC Press, Taylor & Francis Group, London, 376 pp.
  • COHEN, P. A., KNOLL, A. H. and KODNER, R. 2009. Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proceedings of the National Academy of Sciences, 106, 65196524.
  • DAMIANI, M. C., LEONARDI, P. I., PIERONI, O. I. and CÁCERES, E. J. 2006. Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophycea): wall development and behaviour during cyst germination. Phycologia, 45, 616623.
  • DE LEEUW, J. W. and LARGEAU, C. 2006. A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation. 2372. In ENGEL, M. H. and MACKO, S. A. (eds). Organic geochemistry: principles and applications. topics in geobiology. Plenum Press, New York, 884 pp.
  • DE LEEUW, J. W., VERSTEEGH, G. J. M. and VAN BERGEN, P. F. 2006. Biomacromolecules of plants and algae and their fossil analogues. Plant Ecology, 189, 209233.
  • DELWICHE, C. F. 2007. The origin and Evolution of Dinoflagellates. 191205. In FALKOWSKI, P. G. and KNOLL, A. H. (eds). Evolution of primary producers in the sea. Academic Press, Elsevier, Amsterdam, 441 pp.
  • DERENNE, S., LARGEAU, C., BERKALO, C., ROUSSEAU, B., WILHELM, C. and HATCHER, P. 1992a. Non-hydrolysable macromolecular constituents from outer walls of Chlorella fusca and Nanochlorum eucaryotum. Phytochemistry, 31, 19231929.
  • DERENNE, S., LE BERRE, F., LARGEAU, C., HATCHER, P., CONNAN, J. and RAYNAUD, J. F. 1992b. Formation of ultralaminae in marine kerogens via selective preservation of thin resistant outer walls of microalgae. Organic Geochemistry, 19, 345350.
  • DERENNE, S., LARGEAU, C. and BERKALO, C. 1996. First example of an algaenan yielding an aromatic-rich pyrolysate: possible geochemical implications on marine kerogen formation. Organic Geochemistry, 24, 617627.
  • DOWNIE, C. 1982. Lower Cambrian acritarchs from Scotland, Norway, Greenland and Canada. Transactions of the Royal Society of Edinburgh, Earth Sciences, 72, 257282.
  • FAIRCHILD, I. J. and KENNEDY, M. J. 2007. Neoproterozoic glaciation in the Earth System. Journal of Geological Society, London, 164, 895921.
  • FALKOWSKI, P. G. and RAVEN, J. A. 2007. Aquatic photosynthesis. Princeton University Press, Princeton and Oxford, 484 pp.
  • FENSOME, R. A., MACRAE, R. A., MOLDOWAN, J. M., TAYLOR, F. J. R. and WILLIAMS, G. L. 1996. The early Mesozoic radiation of dinoflagellates. Paleobiology, 22, 329338.
  • FINKEL, Z. V., KATZ, M. E., WRIGHT, J. D., SCHOFIELD, O. M. E. and FALKOWSKI, P. G. 2005. Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proceedings of the National Academy of Sciences, USA, 102, 89278932.
  • FINKEL, Z. V., SEBBO, J., FEIST-BURKHARDT, S., IRWIN, A. J., KATZ, M. E., SCHOFIELD, O. M. E. and YOUNG, J. R. 2007. A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic. Proceedings of the National Academy of Sciences, USA, 104, 2041620420.
  • GELIN, F., VOLKMAN, J. K., LARGEAU, C., DERENNE, S., SINNINGHE DAMSTÉ, J. S. and DE LEEUW, J. W. 1999. Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae. Organic Geochemistry, 30, 147159.
  • GREY, K. 2005. Ediacaran palynology of Australia. Memoirs of the Association of Australasian Palaeontologists, 31, 1439.
  • HAGEN, C., SIEGMUND, S. and BRAUNE, W. 2002. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. European Journal of Phycology, 37, 217226.
  • HEDGES, S. B. and KUMAR, S. (eds). 2009. The timetree of life. Oxford University Press, Oxford, 551 pp.
  • HENDERIKS, J. and PAGANI, M. 2007. Refining ancient carbon dioxide estimates: significance of coccolithophore cell size for alkenone-based pCO2 records. Paleoceanography, 22, PA3202.
  • HENDERIKS, J. and PAGANI, M. 2008. Coccolithophore cell size and the Paleogene decline in atmospheric CO2. Earth and Planetary Sciences Letters, 269, 575583.
  • HERMANN, T. N. 1990. Organic World billion years ago. Leningrad, Nauka, 50 pp. (In Russian).
  • JAVAUX, E. J. and MARSHAL, C. P. 2006. A New Approach in deciphering early protist palaeobiology and evolution: combined microscopy and microchemistry of single Proterozoic acritarchs. Review of Palaeobotany and Palynology, 139, 115.
  • JAVAUX, E. J., KNOLL, A. H. and WALTER, M. R. 2004. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology, 2, 121132.
  • KNAUTH, L. P. and KENNEDY, M. J. 2009. The late Precambrian greening of the Earth. Nature, 460, 728732.
  • KNOLL, A. H., JAVAUX, E. J., HEWITT, D. and COHEN, P. 2006. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society B, 361, 10231038.
  • KNOLL, A. H., SUMMONS, R. E., WALDBAUER, J. R. and ZUMBERGE, J. E. 2007. The geological succession of primary producers in the ocean. 133163. In FALKOWSKI, P. G. and KNOLL, A. H. (eds). Evolution of primary producers in the sea. Academic Press, Elsevier, Amsterdam, 441 pp.
  • LAMB, D. M., AWRAMIK, S. M., CHAPMAN, D. J. and ZHU, S. 2009. Evidence for eukaryotic diversification in the ∼1800 million-year-old Changzhougou Formation, North China. Precambrian Research, 173, 93104.
  • LE HÉRISSÉ, A., DORNING, K. J., MULLINS, G. L. and WICANDER, R. 2009. Global patterns of organic-walled phytoplankton biodiversity during the Late Silurian to earliest Devonian. Palynology, 33, 2575.
  • LEE, R. E. 2008. Phycology. Cambridge University Press, Cambridge, 547 pp.
  • LITCHMAN, E., KLAUSMEIER, C. A. and YOSHIYAMA, K. 2009. Contrasting size evolution in marine and freshwater diatoms. Proceedings of the National Academy of Sciences, USA, 106, 26652670.
  • LIU, Y.-L., ZHAO, Y., DAI, Z.-M., CHEN, H.-M. and YANG, W.-J. 2009. Formation of diapause cyst shell in brine shrimp Artemia parthenogenetica, and its resistance role in environmental stresses. Journal of Biological Chemistry, 284, 1693116938.
  • MARGULIS, L., CORLISS, J. O., MELKONIAN, M. and CHAPMAN, D. J. (eds). 1989. Handbook of protoctista. Jones and Bartlett Publishers, Boston, 914 pp.
  • MARSHALL, C. P., JAVAUX, E. J., KNOLL, A. H. and WALTER, M. R. 2005. Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs. A new approach to Palaeobiology. Precambrian Research, 138, 208224.
  • MENG, F. W., ZHOU, C. M., YIN, L. M., CHEN, Z. L. and YUAN, X. L. 2005. The oldest known dinoflagellates: morphological and molecular evidence from Mesoproterozoic rocks at Yongji, Shanxi Province. Chinese Scientific Bulletin, 50, 12301234.
  • MILLER, M. 1996. Chitinozoa. 81107. In JANSONIUS, J. and McGREGOR, D. C. (eds). Palynology: principles and applications. American Association of Stratigraphic Palynologists Foundation 1, Publishers Press, Salt Lake City, 462 pp.
  • MOCZYDŁOWSKA, M. 1991. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian–Cambrian boundary in southeastern Poland. Fossils and Strata, 29, 127 pp.
  • MOCZYDŁOWSKA, M. 1998. Cambrian acritarchs from Upper Silesia, Poland – biochronology and tectonic implications. Fossils and Strata, 46, 121 pp.
  • MOCZYDŁOWSKA, M. 2005. Taxonomic review of some Ediacaran acritarchs from the Siberian Platform. Precambrian Research, 136, 283307.
  • MOCZYDŁOWSKA, M. 2009. The Ediacaran microbiota and the survival of Snowball Earth Conditions. Precambrian Research, 167, 115.
  • MOCZYDŁOWSKA, M. 2010. Life cycle of early Cambrian microalgae from the Skiagia- plexus acritarchs. Journal of Paleontology, 84, 216230.
  • MOCZYDŁOWSKA, M. 2011. The early Cambrian phytoplankton radiation: acritarch evidence from the Lükati Formation, Estonia. Palynology, 35, 101143.
  • MOCZYDŁOWSKA, M. and WILLMAN, S. 2009. Ultrastructure of cell walls in ancient microfossils as a proxy to their biological affinities. Precambrian Research, 173, 2738.
  • MOCZYDŁOWSKA, M., SCHOPF, J. W. and WILLMAN, S. 2010. Micro-scale and nanoscale ultrastructure of cell walls in Cryogenian microfossils revealing their biological affinity. Lethaia, 43, 129136.
  • MOLYNEUX, S. G. 2009. Acritarch (marine microphytoplankton) diversity in an Early Ordovician deep-water setting (the Skiddow Group, northern England): implications for the relationship between sea-level change and phytoplankton diversity. Palaeogeography, Palaeoclimatology, Palaeoecology, 275, 5976.
  • MOUSTAFA, A., BESHTERI, B., MAIER, U. G. and BOWLER, C. 2009. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science, 324, 17241726.
  • NAGOVITSIN, K. 2009. Tappania-bearing association of the Siberian platform: biodiversity, stratigraphic position and geochronological constraints. Precambrian Research, 173, 137145.
  • O’KELLY, C. J. 2007. The origin and early evolution of green plants. 287309. In FALKOWSKI, P. G. and KNOLL, A. H. (eds). Evolution of primary producers in the sea. Academic Press, Elsevier, Amsterdam, 441 pp.
  • PALACIOS, T. and MOCZYDŁOWSKA, M. 1998. Acritarch biostratigraphy of the Lower- Middle Cambrian boundary in the Iberian Chains, Province of Soria, northeastern Spain. Revista Española de Paleontologia, n° extr. Homenaje al Prof. Gonzalo Vidal, 6582.
  • PARIS, F. and NÕVLAK, J. 1999. Biological interpretation and palaeodiversity of a cryptic fossil group: the ‘chitinozoan animal’. Geobios, 32, 315324.
  • PENG, Y., BAO, H. and YUAMN, X. 2009. New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China. Precambrian Research, 168, 223232.
  • PORTER, S. M. 2006. The Proterozoic Fossil Record of Heterotrophic Eukaryotes. 121. In XIAO, S. and KAUFMAN, A. J. (eds). Neoproterozoic geobiology and paleobiology, Springer, Dordrecht, 300 pp.
  • RAFF, E. C., VILLINSKI, J. T., TURNER, F. R., DONOGHUE, P. C. J. and RAFF, R. A. 2006. Experimental taphonomy shows the feasibility of fossil embryos. Proceedings of the National Academy of Sciences, USA, 103, 58465851.
  • RAFF, E. C., SCHOLLAERT, K. L., NELSON, D. E., DONOGHUE, P. C. J., THOMAS, C.-W., TURNER, F. R., STEIN, B. D., DONG, X., BENGTSON, S., HULDTGREN, T., STAMPANONI, M., CHONGYU, Y. and RAFF, R. A. 2008. Embryo fossilization is a biological process mediated by microbial biofilms. Proceedings of the National Academy of Sciences, USA, 105, 1935919364.
  • RAVEN, P. H., EVERT, R. F. and EICHHORN, S. E. 2005. Biology of plants. W. H. Freeman and Company Publishers, New York, 686 pp.
  • SAMUELSSON, J., DAWES, P. R. and VIDAL, G. 1999. Organic-walled microfossils from the Proterozoic Thule Supergroup, Northwest Greenland. Precambrian Research, 96, 123.
  • SERVAIS, T., LEHNERT, O., LI, J., MULLINS, G. L., MUNNECKE, A., NÜTZEL, A. and VECOLI, M. 2008. The Ordovician Biodiversifiction: revolution in the oceanic trophic chain. Lethaia, 41, 99109.
  • STROTHER, P. K. 1996. Chapter 5. Acritarchs. 81107. In JANSONIUS, J. and McGREGOR, D. C. (eds). Palynology: principles and applications, American Association of Stratigraphic Palynologists Foundation 1, Publishers Press, Salt Lake City, 462 pp.
  • STROTHER, P. K. and BECK, J. H. 2000. Spore-like microfossils from Middle Cambrian strata: expanding the meaning of the term cryptospore. 413424. In HARLEY, M. M., MORTON, C. M. and BLACKMORE, S. (eds). Pollen and spores: morphology and biology. Royal Botanical Gardens, Kew, England, 567 pp.
  • TALYZINA, N. M. and MOCZYDŁOWSKA, M. 2000. Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lükati Formation, Estonia. Review of Palaeobotany and Palynology, 112, 121.
  • TAPPAN, H. 1980. The paleobiology of plant protists. WH Freeman, San Francisco, CA, 1028 pp.
  • TRAVERSE, A. 2007. Paleopalynology, Second Edition. Springer, Dortrecht, 813 pp.
  • TURMEL, M., BROUARD, J.-S., GAGNON, C., OTIS, C. and LEMIEUX, C. 2008. Deep division in the Chlorophyceae (Chlorophyta) revealed by chloroplast phylogenetic analyses. Journal of Phycology, 44, 739750.
  • VAJDA, V. and McLOUGHLIN, S. 2004. Fungal proliferation at the Cretaceous-Tertiary boundary. Science, 303, 1489.
  • Van MOURIK, C. A. 2006. The Greenhouse –Icehouse Transition: a dinoflagellates perspective. Meddelanden från Stockholmsuniversitets institution för geologi och geochemi, Vol. 327, 132. Doctoral Thesis. Marine Geoscience at Stockholm University, Sweden 2006.
  • VAN WAVEREN, I. M. and MARCUS, N. H. 1993. Morphology of copepod egg envelopes from Turkey Point (Gulf of Mexico). Special Papers in Palaeontology, 48, 111124.
  • VIDAL, G. 1994. Early ecosystems: limitations imposed by the fossil record. 298311. In BENGTSON, S. (ed.). Early life on earth. Nobel Symposium No. 84, Columbia U.P., New York, 630 pp.
  • VIDAL, G. and FORD, T. 1985. Microbiotas from the late Proterozoic Chuar Group (northern Arizona) and Uinta Mountain Group (Utah) and their chronostratigraphic implications. Precambrian Research, 28, 349489.
  • VIDAL, G., MOCZYDŁOWSKA, M. and RUDAVSKAYA, V. 1993. Biostratigraphical implications of a Chuaria-Tawuia assemblage and associated acritarchs from the Neoproterozoic of Yakutia. Palaeontology, 36, 387402.
  • WEBSTER, J. and WEBER, R. W. S. 2007. Introduction to fungi. Cambridge University Press, Cambridge, 841 pp.
  • WELLMAN, C. H., OSTERLOFF, P. L. and MOHLUDDIN, U. 2003. Fragments of the earliest land plants. Nature, 425, 282285.
  • WICANDER, R. 2007. Acritarchs and prasinophyte phycomata. Short Course. CIMP Lisbon’ 07. Acritarch Subcommisssion, Lisbon, Portugal, 24–28 September 2007, 15 pp.
  • WILLMAN, S. 2009. Morphology and wall ultrastructure of leiosphaeric and acanthomorphic acritarchs from the Ediacaran of Australia. Geobiology, 7, 820.
  • XIAO, S. and KNOLL, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng’an, Guzhou, South China. Journal of Paleontology, 74, 767788.
  • XIAO, S., KNOLL, A. H., KAUFMAN, A. J., YIN, L. and ZHANG, Y. 1997. Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform. Precambrian Research, 84, 197220.
  • YIN, C. Y., BENGTSON, S. and YUE, Z. 2004. Silicified and phosphatized Tianshushania, spheroidal microfossils of possible animal origin from the Neoptorterozoic of South China. Acta Palaeontological Polonica, 49, 112.
  • YIN, L. 1997. Acanthomorphic acritarchs from Meso-Neoproterozoic Shales of the Ruyang Group, Shanxi, China. Review of Palaeobotany and Palynology, 98, 1525.
  • YIN, L., YUAN, X., MENG, F. and HU, J. 2005. Protists of the Upper Mesoproterozoic Ruyang Group in Shanxi Province, China. Precambrian Research, 141, 4966.
  • YUAN, X., XIAO, S. and TAYLOR, T. N. 2005. Lichen-like symbiosis 600 million years ago. Science, 308, 10171020.
  • ZACHOS, J. C., QUINN, T. M. and SALAMY, K. A. 1996. High resolution (104 years) deep- sea foraminiferal stable isotope records of the Eocene–Oligocene climate transition. Paleoceanography, 11, 251266.
  • ZANG, W. 2001. Acritarchs. 7485. In ALEXANDER, E. M., JAGO, J. B., ROZANOV, A. Yu. and ZHURAVLEV, A. YU. (eds). The Cambrian biostratigraphy of the Stansbury Basin, South Australia. IAPC Nauka, Moscow, 344 pp.
  • ZANG, W., JAGO, J. B., ALEXANDER, E. M. and PARASCHIVOIU, E. 2004. A review of basin evolution, sequence analysis and petroleum potential of the frontier Arrowie Basin, South Australia. PESA Eastern Australian Basins Symposium II, Adelaide, 19–22 September, 2004, 243256.
  • ZANG, W., MOCZYDŁOWSKA, M. and JAGO, J. B. 2007. Lower Cambrian acritarch assemblage zones in South Australia and global correlation. Memoirs of the Association of Australasian Palaeontologists, 33, 141177.