• 1
    Takki S, Aromaa U, Kauste A. The validity and usefulness of the end-tidal CO2. Ann Clin Res 1972; 4 (5):278284.
  • 2
    Haskins SC. Equipment and monitoring, In: ThurmonJC, TranquilliWM, BensonGJ. eds. Essentials of Small Animal Anesthesia and Analgesia. Philadelphia: Lippincott Williams and Wilkins; 1999, pp. 225291.
  • 3
    Johnson C. Patient monitoring, In: SeymourC, GleedR. eds. BSAVA Manual of Small Animal Anaesthesia and Analgesia. Cheltenham: British Small Animal Veterinary Association; 1999, pp. 4355.
  • 4
    American Society of Anesthesiologists. Standards for basic anesthetic monitoring (2003).
  • 5
    Muir III WW, Hubbell JAE, Skarda RT, et al. Patient monitoring during anesthesia, In: MuirIIIWW, HubbellJAE, SkardaRT, BednarskiRM. eds. Handbook of Anesthesia and Analgesia. St. Louis: Mosby; 2000, pp. 250283.
  • 6
    Wagner AE, Muir III WW, Bednarski RM. A comparison of arterial and lingual venous blood gases in anesthetized dogs. J Vet Emerg Crit Care 1991; 1 (1):1418.
  • 7
    Shapiro BA, Peruzzi WT, Templin R. Obtaining blood gas samples, In: ShapiroBA, PeruzziWT, TemplinR. eds. Clinical Application of Blood Gases. St. Louis: Mosby; 1994, pp. 301321.
  • 8
    Fitzpatrick RK, Crowe DT. Nasal oxygen administration in dogs and cats: experimental and clinical investigations. J Am Anim Hosp Assoc 1986; 22 (3):293300.
  • 9
    Mann FA, Wagner-Mann C, Allert JA, et al. Comparison of intranasal and intratracheal oxygen administration in healthy awake dogs. Am J Vet Res 1992; 53 (5):856860.
  • 10
    Mason KP, Burrows PE, Dorsey MM, et al. Accuracy of capnography with a 30 foot nasal cannula for monitoring respiratory rate and end-tidal CO2 in children. J Clin Monit Comput 2000; 16 (4):259262.
  • 11
    Hendricks JC, King LG. Practicality. Usefulness, and limits of end-tidal carbon dioxide monitoring in critical small animal patients. J Vet Emerg Crit Care 1994; 4 (1):2939.
  • 12
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1 (18476):307310.
  • 13
    Caulkett NA, Cantwell SL, Houston DM. A comparison of indirect blood pressure monitoring techniques in the anesthetized cat. Vet Surg 1998; 27 (4):370377.
  • 14
    Lee S, Tremper KK, Barker SJ. Effects of anemia on pulse oximetry and continuous mixed venous hemoglobin saturation monitoring in dogs. Anesthesiology 1991; 75 (1):118122.
  • 15
    Casati A, Gallioli G, Scandroglio M, et al. Accuracy of end-tidal carbon dioxide monitoring using the NBP-75 microstream capnometer. A study in intubated ventilated and spontaneously breathing nonintubated patients. Eur J Anaesthesiol 2000; 17 (10):622626.
  • 16
    Oberg B, Waldau T, Larsen VH. The effect of nasal oxygen flow and catheter position on the accuracy of end-tidal carbon dioxide measurements by a pharyngeal catheter in unintubated, spontaneously breathing subjects. Anaesthesia 1995; 50 (8):695698.
  • 17
    Friesen RH, Alswang M. End-tidal PCO2 monitoring via nasal cannulas in pediatric patients: accuracy and sources of error. J Clin Monit 1996; 12 (2):155159.
  • 18
    Fukuda K, Ichinohe T, Kaneko Y. Is measurement of end-tidal CO2 through a nasal cannula reliable? Anesth Prog 1997; 44 (1):2326.
  • 19
    Tobias JD, Flanagan JFK, Wheeler TJ, et al. Noninvasive monitoring of end-tidal CO2 via nasal cannulasin spontaneously breathing children during the perioperative period. Critical Care Medicine 1994; 22 (11):18051808.
  • 20
    Lerche P, Muir WW III. Effect of medetomidine on breathing and inspiratory neuromuscular drive in conscious dogs. Am J Vet Res 2004; 65 (6):720724.