SEARCH

SEARCH BY CITATION

References

  • 1
    Nichol G, Thomas E, Callaway CW, et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. J Am Med Assoc 2008; 300(12):14231431.
  • 2
    Peberdy MA, Kaye W, Ornato JP, et al. Cardiopulmonary resuscitation of adults in the hospital: a report of 14720 cardiac arrests from the National Registry of Cardiopulmonary Resuscitation. Resuscitation 2003; 58(3):297308.
  • 3
    Hofmeister EH, Brainard BM, Egger CM, et al. Prognostic indicators for dogs and cats with cardiopulmonary arrest treated by cardiopulmonary cerebral resuscitation at a university teaching hospital. J Am Vet Med Assoc 2009; 235(1):5057.
  • 4
    Kass PH, Haskins SC. Survival following cardiopulmonary resuscitation in dogs and cats. J Vet Emerg Crit Care 1992; 2(2):5765.
  • 5
    Neumar RW, Nolan JP, Adrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation. Circulation 2008; 118(23):24522483.
  • 6
    Boller M, Boller EM, Oodegard S, et al. Small animal cardiopulmonary resuscitation requires a continuum of care: proposal for a chain of survival for veterinary patients. J Am Vet Med Assoc 2012; 240(5):540554.
  • 7
    Adrie C, Adib-Conquy M, et al. Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis-like” syndrome. J Am Heart Assoc 2002; 106(5):562568.
  • 8
    Cerchiari EL, Safar P, Klein E, et al. Cardiovascular function and neurologic outcome after cardiac arrest in dogs. The cardiovascular post-resuscitation syndrome. Resuscitation 1993; 25(1):933.
  • 9
    Kern KB, Hilwig RW, Rhee KH, Berg RA. Myocardial dysfunction after resuscitation from cardiac arrest: an example of global myocardial stunning. J Am Coll Cardiol 1996; 28(I):232240.
  • 10
    Zia A, Kern KB. Management of postcardiac arrest myocardial dysfunction. Curr Opin Crit Care 2011; 17(3):241246.
  • 11
    Herlitz J, Ekström L, Wennerblom B, et al. Hospital mortality after out-of-hospital cardiac arrest among patients found in ventricular fibrillation. Resuscitation 1995; 29(1):1121.
  • 12
    Trzeciak S, Jones AE, Kilgannon JH, et al. Significance of arterial hypotension after resuscitation from cardiac arrest. Crit Care Med 2009; 37(11):28952903; quiz 2904.
  • 13
    Laurent I, Monchi M, Chiche J-D, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol 2002; 40(12):21102116.
  • 14
    Meyer RJ, Kern KB, Berg RA, et al. Post-resuscitation right ventricular dysfunction: delineation and treatment with dobutamine. Resuscitation 2002; 55(2):187191.
  • 15
    Rivers E, Nguyen B, Havstad S, et al. Early goal directed therapy in the treatment of the severe sepsis and septic shock. N Engl J Med 2001; 345(19):13681377.
  • 16
    Shapiro NI, Howell MD, Talmor D, et al. Implementation and outcomes of the Multiple Urgent Sepsis Therapies (MUST) protocol. Crit Care Med 2006; 34(4):10251032.
  • 17
    Gaieski DF, Band RA, Abella BS, et al. Early goal-directed hemodynamic optimization combined with therapeutic hypothermia in comatose survivors of out-of-hospital cardiac arrest. Resuscitation 2009; 80(4):418424.
  • 18
    Sunde K, Pytte M, Jacobsen D, et al. Implementation of a standardized treatment protocol for postresuscitation care after out-of-hospital cardiac arrest. Resuscitation 2007; 73(1):2939.
  • 19
    Reinhart K, Rudolph T, Bredle D, et al. Comparison of central-venous to mixed-venous oxygen saturation during changes in oxygen supply/demand. Chest 1989; 95(6):12161221.
  • 20
    Stevenson CK, Kidney BA, Duke T, et al. Serial blood lactate concentrations in systemically ill dogs. Vet Clin Pathol 2007; 36(3):234239.
  • 21
    Kliegel A, Losert H, Sterz F, et al. Serial lactate determinations for prediction of outcome after cardiac arrest. Medicine 2004; 83(5):274279.
  • 22
    Poeze M, Solberg BCJ, Greve JWM, et al. Monitoring global volume-related hemodynamic or regional variables after initial resuscitation: what is a better predictor of outcome in critically ill septic patients? Crit Care Med 2005; 33(11):24942500.
  • 23
    Carr BG, Goyal M, Band RA, et al. A national analysis of the relationship between hospital factors and post-cardiac arrest mortality. Intensive Care Med 2009; 35(3):505511.
  • 24
    Bernard S, Buist M, Monteiro O, et al. Induced hypothermia using large volume, ice-cold intravenous fluid in comatose survivors of out-of-hospital cardiac arrest: a preliminary report. Resuscitation 2003; 56(1):913.
  • 25
    Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002; 346(8):557563.
  • 26
    Kim F, Olsufka M, Carlbom D, et al. Pilot study of rapid infusion of 2 L of 4 degrees C normal saline for induction of mild hypothermia in hospitalized, comatose survivors of out-of-hospital cardiac arrest. Circulation 2005; 112(5):715719.
  • 27
    Kim F, Olsufka M, Longstreth WT, et al. Pilot randomized clinical trial of prehospital induction of mild hypothermia in out-of-hospital cardiac arrest patients with a rapid infusion of 4 degrees C normal saline. Circulation 2007; 115(24):30643070.
  • 28
    Kliegel A, Losert H, Sterz F, et al. Cold simple intravenous infusions preceding special endovascular cooling for faster induction of mild hypothermia after cardiac arrest – a feasibility study. Resuscitation 2005; 64(3):347351.
  • 29
    Nordmark J, Johansson J, Sandberg D, et al. Assessment of intravascular volume by transthoracic echocardiography during therapeutic hypothermia and rewarming in cardiac arrest survivors. Resuscitation 2009; 80(11):12341239.
  • 30
    Jacobshagen C, Pax A, Unsöld BW, et al. Effects of large volume, ice-cold intravenous fluid infusion on respiratory function in cardiac arrest survivors. Resuscitation 2009; 80(11):12231228.
  • 31
    Heradstveit BE, Guttormsen AB, Langørgen J, et al. Capillary leakage in post-cardiac arrest survivors during therapeutic hypothermia – a prospective, randomized study. Scand J Trauma Resusc Emerg Med 2010; 18:29.
  • 32
    Krieter H, Denz C, Janke C, et al. Hypertonic-hyperoncotic solutions reduce the release of cardiac troponin I and S-100 after successful cardiopulmonary resuscitation in pigs. Anesth Analg 2002; 95:10311036.
  • 33
    Bertsch T, Denz C, Janke C, et al. Hypertonic-hyperoncotic solutions decrease cardiac troponin I concentrations in peripheral blood in a porcine ischemia-reperfusion model. Exp Toxicol Pathol 2001; 53(2–3):153156.
  • 34
    Kaakinen T, Alaoja H, Heikkinen J, et al. Hypertonic saline dextran improves outcome after hypothermic circulatory arrest: a study in a surviving porcine model. Ann Thorac Surg 2006; 81(1):183190.
  • 35
    Capone A, Safar P, Radovsky A, et al. Complete recovery after normothermic hemorrhagic shock and profound hypothermic circulatory arrest of 60 minutes in dogs. J Trauma. 1996; 40(3):388395.
  • 36
    Leonov Y, Sterz F, Safar P, et al. Hypertension with hemodilution prevents multifocal cerebral hypoperfusion after cardiac arrest in dogs. Stroke 1992; 23(1):4553.
  • 37
    Mayr V, Luckner G, Jochberger S, et al. Arginine vasopressin in advanced cardiovascular failure during the postresuscitation phase after cardiac arrest. Resuscitation 2007; 72(1):3544.
  • 38
    Angelos MG, Murray HN, Waite MD, et al. Postischemic inotropic support of the dysfunctional heart. Crit Care Med 2002; 30(2):410416.
  • 39
    Huang L, Weil MH, Sun S, et al. Levosimendan improves postresuscitation outcomes in a rat model of CPR. J Lab Clin Med 2005; 146(5):256261.
  • 40
    Huang L, Weil MH, Tang W, et al. Comparison between dobutamine and levosimendan for management of postresuscitation myocardial dysfunction. Crit Care Med 2005; 33(3):487491.
  • 41
    Kern KB, Hilwig RW, Berg RA, et al. Postresuscitation left ventricular systolic and diastolic dysfunction. Treatment with dobutamine. Circulation 1997; 95(12):26102613.
  • 42
    Tennyson H, Kern KB, Hilwig RW, et al. Treatment of postresuscitation myocardial dysfunction: aortic counterpulsation versus dobutamine. Resuscitation 2002; 54(1):6975.
  • 43
    Vasquez A, Kern KB, Hilwig RW, et al. Optimal dosing of dobutamine for treating postresuscitation left ventricular dysfunction. Resuscitation 2004; 61(2):199207.
  • 44
    Wang J, Weil MH, Tang W, et al. Levosimendan improves postresuscitation myocardial dysfunction after beta-adrenergic blockade. J Lab Clin Med 2005; 146(3):179183.
  • 45
    Voelckel WG, Lindner KH, Wenzel V, et al. Effect of small-dose dopamine on mesenteric blood flow and renal function in a pig model of cardiopulmonary resuscitation with vasopressin. Anesth Analg 1999; 89(6):14301436.
  • 46
    Studer W, Wu X, Siegemund M, et al. Influence of dobutamine on the variables of systemic haemodynamics, metabolism, and intestinal perfusion after cardiopulmonary resuscitation in the rat. Resuscitation 2005; 64(2):227232.
  • 47
    Sterz F, Leonov Y, Safar P, et al. Hypertension with or without hemodilution after cardiac arrest in dogs. Stroke 1990; 21(8):11781184.
  • 48
    Safar P, Stezoski W, Nemoto EM. Amelioration of brain damage after 12 minutes’ cardiac arrest in dogs. Arch Neurol 1976; 33(2):9195.
  • 49
    Safar P, Xiao F, Radovsky A, et al. Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion. Stroke 1996; 27(1):105113.
  • 50
    Müllner M, Sterz F, Binder M, et al. Arterial blood pressure after human cardiac arrest and neurological recovery. Stroke 1996; 27(1):5962.
  • 51
    Bleyaert A, Safar P, Nemoto E, et al. Effect of postcirculatory-arrest life-support on neurological recovery in monkeys. Crit Care Med 1980; 8(3):153156.
  • 52
    Angelos MG, Ward KR, Beckley PD. Norepinephrine-induced hypertension following cardiac arrest: effects on myocardial oxygen use in a swine model. Ann Emerg Med 1994; 24(5):907914.
  • 53
    Hachimi-Idrissi S, Corne L, Huyghens L. The effect of mild hypothermia and induced hypertension on long term survival rate and neurological outcome after asphyxial cardiac arrest in rats. Resuscitation 2001; 49(1):7382.
  • 54
    Neumar RW. Optimal oxygenation during and after cardiopulmonary resuscitation. Curr Opin Crit Care 2011; 17(3):236240.
  • 55
    Todd MM, Tommasino CSH. Cerebrovascular effects of prolonged hypocarbia and hypercarbia after experimental global ischemia in cats. Crit Care Med 1985; 13(9):720723.
  • 56
    Vanicky I, Marsala M, Murár J, et al. Prolonged postischemic hyperventilation reduces acute neuronal damage after 15 min of cardiac arrest in the dog. Neurosci Lett 1992; 135(2):167170.
  • 57
    Esteban A, Anzueto A, Frutos F, et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. J Am Med Assoc 2002; 287(3):345355.
  • 58
    Lee J, Drobatz K, Koch M, et al. Indications for and outcome of positive-pressure ventilation in cats: 53 cases (1993–2002). J Am Vet Med Assoc 2005; 226(6):924931.
  • 59
    Kuisma M, Boyd J, Voipio V, et al. Comparison of 30 and the 100% inspired oxygen concentrations during early postresuscitation period: a randomized controlled pilot study. Resuscitation 2006; 69(2):199206.
  • 60
    Smith J, Roberts WH, Miller JD, et al. Controlled cardiac reoxygenation does not improve myocardial function following global myocardial ischemia. Int J Surg 2006; 4(3):153159.
  • 61
    Lipinski CA, Hicks SD, Callaway CW. Normoxic ventilation during resuscitation and outcome from asphyxial cardiac arrest in rats. Resuscitation 1999; 42(3):221229.
  • 62
    Zwemer CF, Whitesall SE, D'Alecy LG. Hypoxic cardiopulmonary-cerebral resuscitation fails to improve neurological outcome following cardiac arrest in dogs. Resuscitation 1995; 29(3):225236.
  • 63
    Balan IS, Fiskum G, Hazelton J, et al. Oximetry-guided reoxygenation improves neurological outcome after experimental cardiac arrest. Stroke 2006; 37(12):30083013.
  • 64
    Liu Y, Rosenthal RE, Haywood Y, et al. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Editorial Comment Stroke 1998; 29(8):16791686.
  • 65
    Marsala J, Marsala M, Vanicky I, et al. Postcardiac arrest hyperoxic resuscitation enhances neuronal vulnerability of the respiratory rhythm generator and some brainstem and spinal cord neuronal pools in the dog. Neurosci Lett 1992; 146(2):121124.
  • 66
    Richards EM, Fiskum G, Rosenthal RE, et al. Hyperoxic reperfusion after global ischemia decreases hippocampal energy metabolism. Stroke 2007; 38(5):15781584.
  • 67
    Richards EM, Rosenthal RE, Kristian T, et al. Postischemic hyperoxia reduces hippocampal pyruvate dehydrogenase activity. Free Radic Biol Med 2006; 40(11):19601970.
  • 68
    Vereczki V, Martin E, Rosenthal RE, et al. Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death. J Cereb Blood Flow Metab 2006; 26(6):821835.
  • 69
    Zwemer CF, Whitesall SE, D'Alecy LG. Cardiopulmonary-cerebral resuscitation with 100% oxygen exacerbates neurological dysfunction following nine minutes of normothermic cardiac arrest in dogs. Resuscitation 1994; 27(2):159170.
  • 70
    Abdel-Rahman U, Risteski P, Tizi K, et al. Hypoxic reoxygenation during initial reperfusion attenuates cardiac dysfunction and limits ischemia-reperfusion injury after cardioplegic arrest in a porcine model. J Thorac Cardiovasc Surg 2009; 137(4):978982.
  • 71
    Kilgannon JH, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. J Am Med Assoc 2010; 303(21):21652171.
  • 72
    Kilgannon JH, Jones AE, Parrillo JE, et al. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation 2011; 123(23):27172722.
  • 73
    Mickel HS, Vaishnav YN, Kempski O, et al. Breathing 100% oxygen after global brain ischemia in Mongolian Gerbils results in increased lipid peroxidation and increased mortality. Stroke 1987; 18(2):426430.
  • 74
    The Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002; 346(8):549556.
  • 75
    Nozari A, Safar P, Stezoski SW, et al. Mild hypothermia during prolonged cardiopulmonary cerebral resuscitation increases conscious survival in dogs. Crit Care Med 2004; 32(10):21102116.
  • 76
    Nozari A, Safar P, Stezoski SW, et al. Critical time window for intra-arrest cooling with cold saline flush in a dog model of cardiopulmonary resuscitation. Circulation 2006; 113(23):26902696.
  • 77
    Che D, Li L, Kopil CM, et al. Impact of therapeutic hypothermia onset and duration on survival, neurologic function, and neurodegeneration after cardiac arrest. Crit Care Med 2011; 39(6):14231430.
  • 78
    Al Thenayan E, Savard M, Sharpe M, et al. Predictors of poor neurologic outcome after induced mild hypothermia following cardiac arrest. Neurology 2008; 71(19):15351537.
  • 79
    Bro-Jeppesen J, Kjaergaard J, Horsted TI, et al. The impact of therapeutic hypothermia on neurological function and quality of life after cardiac arrest. Resuscitation 2009; 80(2):171176.
  • 80
    Cheung KW, Green RS, Magee KD. Systematic review of randomized controlled trials of therapeutic hypothermia as a neuroprotectant in postcardiac arrest patients. J Emerg Med 2006; 8(5):329337.
  • 81
    Gillies M a, Pratt R, Whiteley C, et al. Therapeutic hypothermia after cardiac arrest: a retrospective comparison of surface and endovascular cooling techniques. Resuscitation 2010; 81(9):11171122.
  • 82
    Vanston VJ, Lawhon-Triano M, Getts R, et al. Predictors of poor neurologic outcome in patients undergoing therapeutic hypothermia after cardiac arrest. South Med J 2010; 103(4):301306.
  • 83
    Oddo M, Rossetti AO. Predicting neurological outcome after cardiac arrest. Curr Opin Crit Care 2011; 17(3):254259.
  • 84
    Bigelow WG, Lindsay WK, Greenwood WF. Hypothermia; its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperatures. Ann Surg 1950; 132(5):849866.
  • 85
    Wu X, Drabek T, Kochanek PM, et al. Induction of profound hypothermia for emergency preservation and resuscitation allows intact survival after cardiac arrest resulting from prolonged lethal hemorrhage and trauma in dogs. Circulation 2006; 113(16):19741982.
  • 86
    Wu X, Drabek T, Tisherman SA, et al. Emergency preservation and resuscitation with profound hypothermia, oxygen, and glucose allows reliable neurological recovery after 3 h of cardiac arrest from rapid exsanguination in dogs. J Cereb Blood Flow Metab 2008; 28(2):302311.
  • 87
    Savvas I, Anagnostou T, Papazoglou LG, et al. Successful resuscitation from cardiac arrest associated with extradural lidocaine in a dog. Vet Anaesth Analg 2006; 33(3):175178.
  • 88
    Eshel G, Reisler G, Berkovitch M, et al. Comparison of fast versus slow rewarming following acute moderate hypothermia in rats. Paediatr Anaesth 2002; 12(3):235242.
  • 89
    Jo YH, Kim K, Rhee JE, et al. Therapeutic hypothermia attenuates acute lung injury in paraquat intoxication in rats. Resuscitation 2011; 82(4):487491.
  • 90
    Behringer W, Prueckner S, Safar P, et al. Rapid induction of mild cerebral hypothermia by cold aortic flush achieves normal recovery in a dog outcome model with 20-minute exsanguination cardiac arrest. Acad Emerg Med 2000; 7(12):13411348.
  • 91
    Behringer W, Safar P, Wu X, et al. Survival without brain damage after clinical death of 60–120 mins in dogs using suspended animation by profound hypothermia. Crit Care Med 2003; 31(5):15231531.
  • 92
    Haughn C, Gallo U, Raimonde AJ, et al. Feasibility of a novel veno-veno circuit as a central rewarming method in a severely hypothermic canine model. Curr Surg 2003; 60(4):442448.
  • 93
    Jeung KW, Min YI, Heo T. Rapidly induced selective cerebral hypothermia using a cold carotid arterial flush during cardiac arrest in a dog model. Resuscitation 2008; 77(2):235241.
  • 94
    Kaplan MI, Lee Ja, Hovda LR, et al. Adverse effects associated with inadvertent intravenous penicillin G procaine-penicillin G benzathine administration in two dogs and a cat. J Am Vet Med Assoc 2011; 238(4):507510.
  • 95
    Kuboyama K, Safar P, Radovsky A, et al. Delay in cooling negates the beneficial effect of mild resuscitative cerebral hypothermia after cardiac arrest in dogs: a prospective, randomized study Crit Care Med 1993; 21(9):13481358.
  • 96
    Leonov Y, Sterz F, Safar P, et al. Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs. J Cereb Blood Flow Metab 1990; 10(1):5770.
  • 97
    Morray JP PE. Oxygen delivery and consumption during hypothermia and rewarming in the dog. Anesthesiology 1990; 72(3):510516.
  • 98
    Moss JF, Haklin M, Southwick HW RD. A model for the treatment of accidental severe hypothermia. J Trauma 1986; 26(1):6874.
  • 99
    Mujsce DJ, Towfighi JVR. Physiologic and neuropathologic aspects of hypothermic circulatory arrest in newborn dogs. Pediatr Res 1990; 28(4):354360.
  • 100
    Tanimoto H, Ichinose K, Okamoto T, et al. Rapidly induced hypothermia with extracorporeal lung and heart assist (ECLHA) improves the neurological outcome after prolonged cardiac arrest in dogs. Resuscitation 2007; 72(1):128136.
  • 101
    Zhou Y, Wang D, Du M, et al. Lidocaine prolongs the safe duration of circulatory arrest during deep hypothermia in dogs. Can J Anaesth 1998; 45(7):692698.
  • 102
    Pokela M, Heikkinen J, Biancari F, et al. Topical head cooling during rewarming after experimental hypothermic circulatory arrest. Ann Thorac Surg. 2003; 18991910.
  • 103
    Silfvast T, Pettilä V. Outcome from severe accidental hypothermia in Southern Finland – a 10-year review. Resuscitation 2003; 59(3):285290.
  • 104
    Tortorici MA, Mu Y, Kochanek PM, et al. Moderate hypothermia prevents cardiac arrest-mediated suppression of drug metabolism and induction of interleukin-6 in rats. Crit Care Med 2009; 37(1):263269.
  • 105
    Lillehei RC, Longerbeam JK, Bloch JH, et al. The nature of irreversible shock: experimental and clinical observations. Ann Surg 1964; 160682160710.
  • 106
    Wilson GL, White GS, Kosanke SD. Therapeutic effects of prednisolone sodium succinate vs dexamethasone in dogs subjected to E. coli septic shock. J Am Anim Hosp Assoc 1982; 18:639648.
  • 107
    Schumer W. Steroids in the treatment of clinical septic shock. Ann Surg 1976; 184(3):333341.
  • 108
    Hoffman SL, Punjabi NH, Kumala S, et al. Reduction of mortality in chloramphenicol-treated severe typhoid fever by high-dose dexamethasone. N Engl J Med 1984; 310(2):8288.
  • 109
    Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of systemic sepsis. The Veterans Administration Systemic Sepsis Cooperative Study Group. N Engl J Med. 1987; 317(11):659665.
  • 110
    Lucas CE, Ledgerwood AM. The cardiopulmonary response to massive doses of steroids in patients with septic shock. Arch Surg 1984; 119(5):537541.
  • 111
    Bone RC, Fisher CJ, Clemmer TP, et al. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 1987; 317(11):653658.
  • 112
    Luce JM, Montgomery AB, Marks JD, et al. Ineffectiveness of high-dose methylprednisolone in preventing parenchymal lung injury and improving mortality in patients with septic shock. Am Rev Respir Dis 1988; 138(1):6268.
  • 113
    Rothwell PM, Udwadia ZF, Lawler PG. Cortisol response to corticotropin and survival in septic shock. Lancet 1991; 337(8741):582583.
  • 114
    Miller JB, Donnino MW, Rogan M, et al. Relative adrenal insufficiency in postcardiac arrest shock is under-recognized. Resuscitation 2008; 76(2):221225.
  • 115
    Pene F, Hyvernat H, Mallet V, et al. Prognostic value of relative adrenal insufficiency after out-of-hospital cardiac arrest. Intensive Care Med 2005; 31(5):627633.
  • 116
    Briegel J, Kellermann W, Forst H, et al. Low-dose hydrocortisone infusion attenuates the systemic inflammatory response syndrome. The Phospholipase A2 Study Group. Clin Investig 1994; 72(10):782787.
  • 117
    Briegel J, Forst H, Haller M, et al. Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study. Crit Care Med 1999; 27(4):723732.
  • 118
    Bollaert PE, Charpentier C, Levy B, et al. Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med 1998; 26(4):645650.
  • 119
    Annane D, Sébille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. J Am Med Assoc 2002; 288(7):862871.
  • 120
    Sprung CL, Annane D, Keh D, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med 2008; 358(2):111124.
  • 121
    Ebmeyer U, Safar P, Radovsky A, et al. Thiopental combination treatments for cerebral resuscitation after prolonged cardiac arrest in dogs. Exploratory outcome study. Resuscitation 2000; 45(2):119131.
  • 122
    Katz L, Vaagenes P, Safar P, et al. Brain enzyme changes as markers of brain damage in rat cardiac arrest model. Effects of cortico-steroid therapy. Resuscitation 1989; 17(1):3953.
  • 123
    Jastremski M, Sutton-Tyrrell K, Vaagenes P, et al. Glucocorticoid treatment does not improve neurological recovery following cardiac arrest. Brain Resuscitation Clinical Trial I Study Group. J Am Med Assoc 1989; 262(24):34273430.
  • 124
    Grafton ST, Longstreth WT. Steroids after cardiac arrest: a retrospective study with concurrent, nonrandomized controls. Neurology 1988; 38(8):13151316.
  • 125
    Mentzelopoulos SD, Zakynthinos SG, Tzoufi M, et al. Vasopressin, epinephrine, and corticosteroids for in-hospital cardiac arrest. Arch Intern Med 2009; 169(1):1524.
  • 126
    Hui ACF, Cheng C, Lam A, et al. Prognosis following postanoxic myoclonus status epilepticus. Eur Neurol 2005; 54(1):1013.
  • 127
    Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. Brain Resuscitation Clinical Trial I Study Group. N Engl J Med 1986; 314(7):397403.
  • 128
    Longstreth WT, Fahrenbruch CE, Olsufka M, et al. Randomized clinical trial of magnesium, diazepam, or both after out-of-hospital cardiac arrest. Neurology 2002; 59(4):506514.
  • 129
    Hall RT, Hall FK, Daily DK. High-dose phenobarbital therapy in term newborn infants with severe perinatal asphyxia: a randomized, prospective study with three-year follow-up. J Pediatr 1998; 132(2):345348.
  • 130
    Goldberg RN, Moscoso P, Bauer CR, et al. Use of barbiturate therapy in severe perinatal asphyxia: a randomized controlled trial. J Pediatr 1986; 109(5):851856.
  • 131
    Todd MM, Chadwick HS, Shapiro HM, et al. The neurologic effects of thiopental therapy following experimental cardiac arrest in cats. Anesthesiology 1982; 57(2):7686.
  • 132
    Wright WL, Geocadin RG. Postresuscitative intensive care: neuroprotective strategies after cardiac arrest. Semin Neurol 2006; 26(4):396402.
  • 133
    Metter RB, Rittenberger JC, Guyette FX, et al. Association between a quantitative CT scan measure of brain edema and outcome after cardiac arrest. Resuscitation 2011; 82(9):11801185.
  • 134
    Cole SG, Otto CM, Hughes D. Cardiopulmonary cerebral resuscitation in small animals – a clinical practice review. Part II. J Vet Emerg Crit Care 2003; 13(1):1323.
  • 135
    Boller M, Kellett-Gregory L, Shofer FS, et al. The clinical practice of CPCR in small animals: an internet-based survey. J Vet Emerg Crit Care 2010; 20(6):558570.
  • 136
    Breil M, Krep H, Heister U, et al. Randomized study of hypertonic saline infusion during resuscitation from out-of-hospital cardiac arrest. Resuscitation 2012; 83(3):347352.
  • 137
    Fischer M, Dahmen A, Standop J, et al. Effects of hypertonic saline on myocardial blood flow in a porcine model of prolonged cardiac arrest. Resuscitation 2002; 54(3):269280.
  • 138
    Krep H, Breil M, Sinn D, et al. Effects of hypertonic versus isotonic infusion therapy on regional cerebral blood flow after experimental cardiac arrest cardiopulmonary resuscitation in pigs. Resuscitation 2004; 63(1):7383.
  • 139
    Bender R, Breil M, Heister U, et al. Hypertonic saline during CPR: feasibility and safety of a new protocol of fluid management during resuscitation. Resuscitation 2007; 72(1):7481.
  • 140
    Ayoub IM, Kolarova J, Gazmuri RJ. Cariporide given during resuscitation promotes return of electrically stable and mechanically competent cardiac activity. Resuscitation 2010; 81(1):106110.
  • 141
    Ayoub IM, Kolarova JD, Kantola RL, et al. Zoniporide preserves left ventricular compliance during ventricular fibrillation and minimizes postresuscitation myocardial dysfunction through benefits on energy metabolism. Crit Care Med 2007; 35(10):23292336.
  • 142
    Wang S, Radhakrishnan J, Ayoub IM, et al. Limiting sarcolemmal Na+ entry during resuscitation from ventricular fibrillation prevents excess mitochondrial Ca2+ accumulation and attenuates myocardial injury. J Appl Physiol 2007; 103(1):5565.
  • 143
    Wann SR, Weil MH, Sun S, et al. Cariporide for pharmacologic defibrillation after prolonged cardiac arrest. J Cardiovasc Pharmacol Ther 2002; 7(3):161169.
  • 144
    Crumrine RC, Bergstrand K, Cooper AT, et al. Lamotrigine protects hippocampal CA1 neurons from ischemic damage after cardiac arrest. Stroke 1997; 28(11):22302236; discussion 2237.
  • 145
    Schurr A. Neuroprotection against ischemic/hypoxic brain damage: blockers of ionotropic glutamate receptor and voltage sensitive calcium channels. Curr Drug Targets 2004; 5(7):603618.
  • 146
    Siesjö BK, Memezawa H, Smith ML. Neurocytotoxicity: pharmacological implications. Fundam Clin Pharmacol 1991; 5(9):755767.
  • 147
    Fleischer JE, Tateishi A, Drummond JC, et al. MK-801, an excitatory amino acid antagonist, does not improve neurologic outcome following cardiac arrest in cats. J Cereb Blood Flow Metab 1989; 9(6):795804.
  • 148
    Valentino K, Newcomb R, Gadbois T, et al. A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc Natl Acad Sci USA 1993; 90(16):78947897.
  • 149
    Xu K, Puchowicz MA, Sun X, et al. Decreased brainstem function following cardiac arrest and resuscitation in aged rat. Brain Res 2010; 13281811328189.
  • 150
    Dezfulian C, Shiva S, Alekseyenko A, et al. Nitrite therapy after cardiac arrest reduces reactive oxygen species generation, improves cardiac and neurological function, and enhances survival via reversible inhibition of mitochondrial complex I. Circulation 2009; 120(10):897905.
  • 151
    Natale JE, Schott RJ, Hall ED, et al. Effect of the aminosteroid U74006F after cardiopulmonary arrest in dogs. Stroke 1988; 19(11):13711378.
  • 152
    Sharma HS, Miclescu A, Wiklund L. Cardiac arrest-induced regional blood-brain barrier breakdown, edema formation and brain pathology: a light and electron microscopic study on a new model for neurodegeneration and neuroprotection in porcine brain. J Neural Transm 2011; 118(1):87114.
  • 153
    Silbergleit R, Haywood Y, Fiskum G, et al. Lack of a neuroprotective effect from N-acetylcysteine after cardiac arrest and resuscitation in a canine model. Resuscitation 40(3):181186.
  • 154
    Cerchiari EL, Sclabassi RJ, Safar P, et al. Effects of combined superoxide dismutase and deferoxamine on recovery of brainstem auditory evoked potentials and EEG after asphyxial cardiac arrest in dogs. Resuscitation 1990; 19(1):2540.
  • 155
    Minamishima S, Bougaki M, Sips PY, et al. Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation 2009; 120(10):888896.
  • 156
    Cour M, Loufouat J, Paillard M, et al. Inhibition of mitochondrial permeability transition to prevent the postcardiac arrest syndrome: a preclinical study. Eur Heart J 2011; 32(2):226235.
  • 157
    Friberg H, Wieloch T. Mitochondrial permeability transition in acute neurodegeneration. Biochimie 84(2–3):241250.
  • 158
    Liu XL, Nozari A, Basu S, et al. Neurological outcome after experimental cardiopulmonary resuscitation: a result of delayed and potentially treatable neuronal injury? Acta Anaesthesiol Scand 2002; 46(5):537546.
  • 159
    Xu K, Puchowicz MA, Lust WD, et al. Adenosine treatment delays postischemic hippocampal CA1 loss after cardiac arrest and resuscitation in rats. Brain Res 2006; 1071(1):208217.
  • 160
    Sharma AB, Knott EM, Bi J, et al. Pyruvate improves cardiac electromechanical and metabolic recovery from cardiopulmonary arrest and resuscitation. Resuscitation 2005; 66(1):7181.
  • 161
    Suffoletto BP, Salcido DD, Logue ES, et al. Ethyl pyruvate enhances intra-resuscitation hemodynamics in prolonged ventricular fibrillation arrest. Resuscitation 2009; 80(12):14111416.
  • 162
    Safar P. On the history of modern resuscitation. Crit Care Med 1996; 24(2 Suppl):S3S11.
  • 163
    Behringer W, Safar P, Kentner R, et al. Antioxidant Tempol enhances hypothermic cerebral preservation during prolonged cardiac arrest in dogs. J Cereb Blood Flow Metab 2002; 22(1):105117.
  • 164
    Kirves H, Skrifvars MB, Vähäkuopus M, et al. Adherence to resuscitation guidelines during prehospital care of cardiac arrest patients. Eur J Emerg Med 2007; 14(2):7581.
  • 165
    Sunde K, Søreide E. Therapeutic hypothermia after cardiac arrest: where are we now? Curr Opin Crit Care 2011; 17(3):247253.
  • 166
    Callaway CW, Schmicker R, Kampmeyer M, et al. Receiving hospital characteristics associated with survival after out-of-hospital cardiac arrest. Resuscitation 2010; 81(5):524529.
  • 167
    Carr BG, Kahn JM, Merchant RM, et al. Inter-hospital variability in post-cardiac arrest mortality. Resuscitation 2009; 80(1):3034.
  • 168
    Engdahl J, Abrahamsson P, Bång a, et al. Is hospital care of major importance for outcome after out-of-hospital cardiac arrest? Experience acquired from patients with out-of-hospital cardiac arrest resuscitated by the same Emergency Medical Service and admitted to one of two hospitals over a 16-year period in the municipality of Göteborg. Resuscitation 2000; 43(3):201211.
  • 169
    Liu JM, Yang Q, Pirrallo RG, et al. Hospital variability of out-of-hospital cardiac arrest survival. Prehosp Emerg Care 2008; 12(3):339346.