Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics

Authors

  • Frederic Heitz,

    1. Centre de Recherches de Biochimie Macromoléculaire, UMR 5237, CNRS, UM-1, UM-2, CRBM-Department of Molecular Biophysics and Therapeutics, 1919 Route de Mende, Montpellier, France
    Search for more papers by this author
  • May Catherine Morris,

    1. Centre de Recherches de Biochimie Macromoléculaire, UMR 5237, CNRS, UM-1, UM-2, CRBM-Department of Molecular Biophysics and Therapeutics, 1919 Route de Mende, Montpellier, France
    Search for more papers by this author
  • Gilles Divita

    1. Centre de Recherches de Biochimie Macromoléculaire, UMR 5237, CNRS, UM-1, UM-2, CRBM-Department of Molecular Biophysics and Therapeutics, 1919 Route de Mende, Montpellier, France
    Search for more papers by this author

Gilles Divita, Centre de Recherches de Biochimie Macromoléculaire, UMR 5237, CNRS, UM-1, UM-2, CRBM-Department of Molecular Biophysics and Therapeutics, 1919 Route de Mende, 34293 Montpellier, France. E-mail: gilles.divita@crbm.cnrs.fr

Abstract

The recent discovery of new potent therapeutic molecules that do not reach the clinic due to poor delivery and low bioavailability have made of delivery a key stone in therapeutic development. Several technologies have been designed to improve cellular uptake of therapeutic molecules, including cell-penetrating peptides (CPPs). CPPs were first discovered based on the potency of several proteins to enter cells. Numerous CPPs have been described so far, which can be grouped into two major classes, the first requiring chemical linkage with the drug for cellular internalization and the second involving formation of stable, non-covalent complexes with drugs. Nowadays, CPPs constitute very promising tools for non-invasive cellular import of cargo and have been successfully applied for in vitro and in vivo delivery of therapeutic molecules varying from small chemical molecule, nucleic acids, proteins, peptides, liposomes and particles. This review will focus on the structure/function and cellular uptake mechanism of CPPs in the general context of drug delivery. We will also highlight the application of peptide carriers for the delivery of therapeutic molecules and provide an update of their clinical evaluation.

This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009

Ancillary