SEARCH

SEARCH BY CITATION

References

  • Ajit CT, Yosef H, Charles WD (1996). Multiple test procedure for dose finding. Biometrics 52: 2137.
  • Akashi S, Saitoh S, Wakabayashi Y, Kikuchi T, Takamura N, Nagai Y et al. (2003). Lipopolysaccharide interaction with cell surface Toll-like receptor 4-MD-2: higher affinity than that with MD-2 or CD14. J Exp Med 198: 10351042.
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732738.
  • Beutler B (2004). Inferences, questions and possibilities in Toll-like receptor signaling. Nature 430: 257263.
  • Christ WJ, Asano O, Robidoux AL, Perez M, Wang Y, Dubuc GR et al. (1995). E5531, a pure endotoxin antagonist of high potency. Science 268: 8083.
  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303: 15291531.
  • Dragovich PS, Webber SE, Babine RE, Fuhrman SA, Patick AK, Matthews DA et al. (1998). Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 2. peptide structure-activity studies. J Med Chem 41: 28192834.
  • Gray P, Dunne A, Brikos C, Jefferies CA, Doyle SL, O'Neill LA (2006). MyD88 Adapter-like (Mal) is phosphorylated by Bruton's tyrosine kinase during TLR2 and TLR4 signal transduction. J Biol Chem 281: 1048910495.
  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR et al. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 10991103.
  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S et al. (2004). Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303: 15261529.
  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H et al. (2000). A Toll-like receptor recognizes bacterial DNA. Nature 408: 740745.
  • Horng T, Barton GM, Flavell RA, Medzhitov R (2002). The adaptor molecule TIRAP provides signaling specificity for Toll-like receptors. Nature 420: 329333.
  • Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y et al. (1999). Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162: 37493752.
  • Hoshino K, Kaisho T, Iwabe T, Takeuchi O, Akira S (2002). Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation. Int Immunol 14: 12251231.
  • Ii M, Matsunaga N, Hazeki K, Nakamura K, Takashima K, Seya T et al. (2006). A novel cyclohexene derivative, TAK-242, selectively inhibits Toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling. Mol Pharmacol 69: 12881295.
  • Jefferies CA, Doyle S, Brunner C, Dunne A, Brint E, Wietek C et al. (2003). Bruton's tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor kappaB activation by Toll-like receptor 4. J Biol Chem 278: 2625826264.
  • Kaisho T, Takeuchi O, Kawai T, Hoshino K, Akira S (2001). Endotoxin-induced maturation of MyD88-deficient dendritic cells. J Immunol 166: 56885694.
  • Kawamoto T, Ii M, Kitazaki T, Iizawa Y, Kimura H (2008). TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain. Eur J Pharmacol 584: 4048.
  • Kollewe C, Mackensen AC, Neumann D, Knop J, Cao P, Li S et al. (2004). Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J Biol Chem 279: 52275236.
  • Lee HK, Dunzendorfer S, Tobias PS (2004). Cytoplasmic domain-mediated dimerizations of toll-like receptor 4 observed by beta-lactamase enzyme fragment complementation. J Biol Chem 279: 1056410574.
  • Li S, Strelow A, Fontana EJ, Wesche H (2002). IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci USA 99: 55675572.
  • Lynn M, Rossignol DP, Wheeler JL, Kao RJ, Perdomo CA, Noveck R et al. (2003). Blocking of responses to endotoxin by E5564 in healthy volunteers with experimental endotoxemia. J Infect Dis 187: 631639.
  • Lynn M, Wong YN, Wheeler JL, Kao RJ, Perdomo CA, Noveck R et al. (2004). Extended in vivo pharmacodynamic activity of E5564 in normal volunteers with experimental endotoxemia. J Pharmacol Exp Ther 308: 175181.
  • McGettrick AF, Brint EK, Palsson-McDermott EM, Rowe DC, Golenbock DT, Gay NJ et al. (2006). Trif-related adapter molecule is phosphorylated by PKCε during Toll-like receptor 4 signaling. Proc Natl Acad Sci USA 103: 91969201.
  • Marshall JC (2003). Such stuff as dreams are made on: mediator-directed therapy in sepsis. Nat Rev Drug Discov 2: 391405.
  • Matthews DA, Dragovich PS, Webber SE, Fuhrman SA, Patick AK, Zalman LS et al. (1999). Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc Natl Acad Sci USA 96: 1100011007.
  • Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S et al. (1998). MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2: 253258.
  • Moore RA, Bates NC, Hancock RE (1986). Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin. Antimicrob Agents Chemother 29: 496500.
  • Morrison DC, Jacobs DM (1976). Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry 13: 813818.
  • Ogawa M (1998). Systemic inflammatory response syndrome – a concept for avoiding organ dysfunction induced by a ‘second attack’. Surg Today 28: 679681.
  • Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T (2003). TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4: 161167.
  • Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB et al. (2000). The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA 97: 1376613771.
  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 20852088.
  • Rifkin IR, Leadbetter EA, Busconi L, Viglianti G, Marshak-Rothstein A (2005). Toll-like receptors, endogenous ligands and systemic autoimmune disease. Immunol Rev 204: 2742.
  • Rowe DC, McGettrick AF, Latz EG, Monks B, Gay NJ, Yamamoto M et al. (2006). The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc Natl Acad Sci USA 103: 62996304.
  • Sha T, Sunamoto M, Kitazaki T, Sato J, Ii M, Iizawa Y (2007). Therapeutic effects of TAK-242, a novel selective Toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model. Eur J Pharmacol 571: 231239.
  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K et al. (1999). MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189: 17771782.
  • Da Silva Correia J, Soldau K, Christen U, Tobias PS, Ulevitch RJ (2001). Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. Transfer from CD14 to TLR4 and MD-2. J Biol Chem 276: 2112921135.
  • Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A et al. (2001). Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13: 933940.
  • Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z et al. (2002). Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169: 1014.
  • Yamada M, Ichikawa T, Ii M, Sunamoto M, Itoh K, Tamura K et al. (2005). Discovery of novel and potent small-molecule inhibitors of NO and cytokine production as antisepsis agents: synthesis and biological activity of alkyl 6-(N-substituted sulfamoyl)cyclohex-1-ene-1-carboxylate. J Med Chem 48: 74577467.
  • Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T et al. (2002a). Essential role for TIRAP in activation of the signaling cascade shared by TLR2 and TLR4. Nature 420: 324329.
  • Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K et al. (2002b). Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 169: 66686672.
  • Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T et al. (2003). TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4: 11441150.
  • Youn HS, Saitoh SI, Miyake K, Hwang DH (2006). Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem Pharmacol 72: 6269.
  • Zhu S, Hudson TH, Kyle DE, Lin AJ (2002). Synthesis and in vitro studies of novel pyrimidinyl peptidomimetics as potential antimalarial therapeutic agents. J Med Chem 45: 34913496.
  • Zuany-Amorim C, Hastewell J, Walker C (2002). Toll-like receptors as potential therapeutic targets for multiple diseases. Nat Rev Drug Discov 1: 797807.