SEARCH

SEARCH BY CITATION

References

  • Accurso FJ, Rowe SM, Durie PR, Konstan MW, Dunitz J, Hornick DB et al. (2008). Interim results of a phase 2a study of VX-770 to evaluate safety, pharmacokinetics and biomarkers of CFTR activity in cystic fibrosis subjects with G551D. Pediatr Pulmonol Suppl 31: 295.
  • Adam G, Ousingsawat J, Schreiber R, Kunzelmann K (2005). Increase in intracellular Cl- concentration by cAMP and Ca2+-dependent stimulation of M1 collecting duct cells. Eur J Physiol 449: 470478.
  • Alexander SPH, Mathie A, Peters JA (2009). Guide to receptors and channels (GRAC), 4th edn. Br J Pharmacol 158 (Suppl. 1): S1S254.
  • Ballard ST, Taylor AE (1994). Bioelectric properties of proximal bronchiolar epithelium. Am J Physiol 267: 7984.
  • Ballard ST, Trout L, Bebok Z, Sorscher EJ, Crews A (1999). CFTR involvement in chloride, bicarbonate, and liquid secretion by airway submucosal glands. Am J Physiol 277: L694L699.
  • Becq F, Mettey E, Gray MA, Galietta LJV, Dormer RL, Merton M et al. (1999). Development of substituted benzo[c]quinolizinium compounds as novel activators of the cystic fibrosis chloride channel. J Biol Chem 274: 2741527425.
  • Berdiev BK, Qadri YJ, Benos DJ (2009). Assessment of the CFTR and ENaC association. Mol Biosyst 5: 123127.
  • Bijvelds MJC, Bot AGM, Escher JC, De Jonge HR (2009). Activation of intestinal chloride secreion by lubprostone requires the cystic fibrosis transmembrane conductance regulator. Gastroenterology 137: 976985.
  • Bridges RJ, Newton BB, Pilewski JM, Devor DD, Poll CT, Hall RL (2001). Na+ transport in normal and CF human bronchial epithelial cells is inhibited by BAY 39-9437. Am J Physiol 281: L16L23.
  • Chiaw PK, Wellhauser L, Huan LJ, Ramjeesingh M, Bear CE (2010). A chemical corrector modifies the channel function of F508del-CFTR. Mol Pharmacol 78: 411418.
  • Cloutier MM, Guernsey L, Mattes P, Koeppen B (1990). Duramycin enhances chloride secretion in airway epithelium. Am J Physiol 259: C450C454.
  • Cloutier MM, Guernsey L, Sha'afi RI (1993). Duramycin increases intracellular calcium in airway epithelium. Membr Biochem 10: 107118.
  • Conese M, Romano M, Furnari ML, Copreni E, Fino ID, Pardo F et al. (2009). New genetic and pharmacological treatments for cystic fibrosis. Curr Ped Rev 5: 827.
  • Coote K, Atherton-Watson HC, Sugar R, Young A, MacKenzie-Beevor A, Gosling M et al. (2009). Camostat attenuates airway epithelial sodium channel function in vivo through inhibition of a channel-activating protease. J Pharmacol Exp Ther 329: 764774.
  • Cuppoletti J, Malinowska DH, Tewari KP, Li Q-j, Sherry AM, Patchen ML et al. (2004). SPI-0211 activates T84 cell chloride transport and recombinant human ClC-2 chloride currents. Am J Physiol 287: C1173C1183.
  • Cuthbert AW (1976). Importance of guanidinium groups for blocking sodium channels in epithelia. Mol Pharmacol 12: 945957.
  • Cuthbert AW (2010). Lubiprostone targets prostanoid EP4 receptors in ovine airways. Br J Pharmacol 162: 508520.
  • Cuthbert AW, Fanelli GM (1978). Effects of some pyrazine carboxamides on sodium transport in frog skin. Br J Pharmacol 63: 139149.
  • Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ (1992). Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358: 761764.
  • Deterding RR, LaVange LM, Engels JM, Mathews DW, Coquillette SJ, Brody AS et al. (2007). Phase 2 randomised safety and efficacy tial of nebulized Denufosol tetrasodium in cystic fibrosis. Am J Respir Crit Care Med 176: 362369.
  • Devor DC, Pilewski JM (1999). UTP inhibits Na+ absorption in wild-type and ΔF508 CFTR-expressing human bronchial epithelia. Am J Physiol 276: C827C837.
  • Donaldson SH, Boucher RC (2007). Sodium channels and cystic fibrosis. Chest 132: 16311636.
  • Dormer RL, Derand R, McNeilly CM, Mettey Y, Bulteau-Pignoux L, Metaye T et al. (2001). Correction of delF508-CFTR activity with benzo(c) quinolizinium compounds through facilitation of its processing in cystic fibrosis airway cells. J Cell Sci 114: 40734081.
  • Elkins MR, Robinson M, Rose BR, Harbour C, Moriarty CP, Marks GB et al. (2006). A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 354: 229240.
  • Galietta LJV, Sprinsteel MF, Eda M, Niedzinski EJ, By K, Haddadin MJ et al. (2001). Novel CFTR channel activators identified by screening of combinatorial libraries based on flavone and benzoquinolizinium lead compounds. J Biol Chem 276: 1972319728.
  • Gribkoff VK, Champigny G, Babry P, Dworetzky SI, Meanwell NA, Lazdunski M (1994). The substituted benzimidazolone NS004 is an opener of the cystic fibrosis chloride channel. J Biol Chem 269: 1098310986.
  • Hirsh AJ, Sabater JR, Zamurs A, Smith RT, Paradiso AM, Hopkins S et al. (2004). Evaluation of second generation amiloride analogs as therapy for cystic fibrosis lung disease. J Pharmacol Exp Ther 311: 929938.
  • Hirsh AJ, Molino BF, Zhang J, Astakhova N, Geiss WB, Sargent BJ et al. (2006). Design,synthesis, and structure-activity relationships of novel 2-substituted pyrazinoylguanidine epithelial sodium channel blockers: Drugs for cystic fibrosis and chronic bronchitis. J Med Chem 49: 40984115.
  • Hirsh AJ, Zhang J, Zamurs A, Fleegle J, Thelin WR, Caldwell RA et al. (2008). Pharmacological properties of N-(3,5-diamino-6-chloropyrazine-2-carbonyl)N'-4-[4(2,3-dihydroxypropoxy)phenyl]butyl-guanidine methanesulphonate (552-02), a novel epithelial sodium channel blocker with a potential clinical efficacy for cystic fibrosis lung disease. J Pharmacol Exp Ther 325: 7788.
  • Hofmann T, Stutts MJ, Ziersch A, Ruckes C, Weber WM, Knowles MR et al. (1998). Effects of topically delivered benzamil and amiloride on nasal potential difference in cystic fibrosis. Am J Respir Crit Care Med 157: 18441849.
  • Hogman M, Mork A-C, Roomans GM (2002). Hypertonic saline increases tight junction permeability in airway epithelium. Eur Respir J 20: 14441448.
  • Howard M, Frizzell RA, Bedwell DM (1996). Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 2: 467469.
  • Illek B, Fischer H, Santos GF, Widdicombe JH, Machen TE, Reenstra WW (1995). cAMP independent inactivation of CFTR chloride channels by the tyrosine kinase inhibitor genistein. Am J Physiol 268: 886893.
  • Inglis SK, Wilson SM (2005). Cystic fibrosis and airway submucosal glands. Ped Pulmonol 40: 279284.
  • Jaques A, Daviskas E, Turton JA, McKay K, Cooper P, Stirling RG et al. (2008). Inhaled mannitol improves lung function in cystic fibrosis. Chest 133: 13881396.
  • Jayaraman S, Joo NS, Reitz B, Wine JJ, Verkman AS (2001). Submucosal gland secretions in airways from cystic fibrosis patients have normal [Na+] and pH but elevated viscosity. Proc Natl Acad Sci USA 98: 81198123.
  • Joo NS, Wu JV, Krouse ME, Senz Y, Wine JJ (2001). An optical method for quantifying rates of mucus secretion from single submucosal glands. Am J Physiol 281: L458L468.
  • Joo NS, Irokawa T, Robbins RC, Wine JJ (2006). Hyposecretion, not hyperabsorption, is the basic defect of cystic fibrosis airway glands. J Biol Chem 281: 73927398.
  • Joo NS, Wine JJ, Cuthbert AW (2009). Lubiprostone stimulates secretion from tracheal submucosal glands of sheep,pigs and humans. Am J Physiol 296: L811L824.
  • Kellenberger S, Schild L (2002). Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure. Physiol Rev 82: 735767.
  • Knowles MR, Church NL, Waltner NE, Yankaskas JR, Gilligan P, King M et al. (1990). A pilot study of aerosolised amiloride for the treatment of lung disease in cystic fibrosis. N Engl J Med 322: 11891194.
  • Knowles MR, Clarke LL, Boucher RC (1991). Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N Engl J Med 325: 533538.
  • Kohler D, App E, Schmitz-Schumann M, Wurtemberger G, Matthys H (1986). Inhalation of amiloride improves the mucociliary clearance and the cough clearance in patients with cystic fibroses. Eur J Respir Dis 146: 319326.
  • Konstas AA, Koch J-P, Korbmacher C (2003). cAMP-dependent activation of CFTR inhibits epithelial sodium channel (ENaC) without affecting its surface expression. Eur J Physiol 445: 513521.
  • Lazrak A, Nita I, Subramaniyam D, Wei S, Song W, Ji H-L et al. (2009). Alpha 1-antitrypsin inhibits epithelial Na+ transport in vitro and in vivo. Am J Respir Cell Mol Biol 41: 261270.
  • Loo TW, Bartlett C, Clarke DM (2005). Rescue of ΔF508 and other misprocessed CFTR mutants by a novel quinazoline compound. Mol Pharmaceut 2: 407413.
  • Ma T, Vetrivel L, Yang H, Pedemonte N, Zegarra-Moran O, Galietta LJV et al. (2002). High-affinity activators of cystic fibrosis transmembrane conductance regulator (CFTR) chloride conductance identified by high-throughput screening. J Biol Chem 277: 3723537241.
  • Mall M, Grubb BR, Harkema JR, O'Neal WK, Boucher RC (2004). Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nature Med 10: 487493.
  • Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW et al. (1998). Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airway disease. Cell 95: 10051010.
  • Mohammad-Panah R, Gyomorey K, Rommens J, Choudhury M, Li C, Wang Y et al. (2001). ClC-2 contributes to native chloride secretion by a human intestinal cell line Caco-2. J Biol Chem 276: 83068313.
  • Murthy M, Pedemonte N, MacVinish L, Galietta L, Cuthbert AW (2005). Chlorobenzo[F]isoquinoline (CBIQ) a novel activator of CFTR and ΔF508 CFTR. Eur J Pharmacol 516: 118124.
  • Pedemonte N, Diena T, Caci E, Nieddu E, Mazzei M, Ravazzolo R et al. (2005a). Antihypertensive 1,4-dihydropyridines as correctors of the cystic fibrosis transmembrane conductance regulator channel gating defect caused by cystic fibrosis mutations. Mol Pharmacol 68: 17361746.
  • Pedemonte N, Lukacs GL, Du K, Caci E, Zegarra-Moran O, Galietta LJV et al. (2005b). Small molecule correctors of defective ΔF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest 115: 25642571.
  • Planes C, Caughey GH (2007). Regulation of the epithelial Na+ channel by peptidases. Curr Top Dev Biol 78: 2344.
  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z et al. (1989). Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245: 10661073.
  • Roberts M, Hladky SB Pickles RJ, Cuthbert AW (1991). Stimulation of sodium transport by duramycin in cultured human colonic epithelia. J Pharmacol Exp Ther 259: 10501058.
  • Rodgers HC, Knox AJ (1999). The effect of topical benzamil and amiloride on nasal potential difference in cystic fibrosis. Eur Respir J 14: 693696.
  • Rossier BC, Stutts MJ (2009). Activation of the epithelial sodium channel (ENaC) by serine proteases. Ann Rev Physiol 71: 361379.
  • Sheth TR, Henderson RM, Hladky SB, Cuthbert AW (1992). Ion channel formation by duramycin. Biochim Biophys Acta 1107: 179185.
  • Song Y, Verkman AS (2001). Aquaporin-5 dependent fluid secretion in airway submucosal glands. J Biol Chem 276: 4128841292.
  • Springsteel MF, Galietta LJ, Ma T, By K, Berger GO, Yang H et al. (2003). Benzoflavone activators ot the cystic fibrosis transmembrane conductance regulator: towards a pharmacophore model for the nucleotide-binding domain. Bioorg Med Chem 11: 41134120.
  • Szkotak M, Murthy M, MacVinish LJ, Duszyk M, Cuthbert AW (2004). 4-chloro-benzo{F]isoquinoline (CBIQ) activates CFTR chloride channels and KCNN4 potassium channels in human airway epithelial cells. Br J Pharmacol 142: 531542.
  • Tarran R, Trout L, Donaldson SH, Boucher RC (2006). Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia. J Gen Physiol 127: 591604.
  • Tsai M-F, Li M, Hwang T-C (2010). Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. J Gen Physiol 135: 53995414.
  • Van Goor F, Strayley KS, Cao D, Gonzalez G, Hadida S, Hazlewood A et al. (2006). Rescue of ΔF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol 290: L1117L1130.
  • Van Goor F, Hadida S, Grootenhuis PDJ, Burton B, Cao D, Neuberger T et al. (2009). Rescue of a CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Nat Acad Sci USA 106: 1882518830.
  • Verkman AS (2004). Drug discovery in academe. Am J Physiol 286: C465C474.
  • Verkman AS, Song Y, Thiagarajah JR (2003). Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease. Am J Physiol 284: C2C15.
  • Vuagniaux G, Vallet V, Jaeger NF, Hummler E, Rossier BC (2002). Synergistic activation of ENaC by three membrane-bound channel-activating serine proteases (mCAP1, mCAP2, and mCAP3) and serum and glucocorticoid-regulated kinase(Sgk1) in Xenopus oocytes. J Gen Physiol 120: 191201.
  • Wilschanski M, Yahav Y, Yaacov Y, Blau H, Bentur L, Rivlin J et al. (2003). Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 349: 14331441.
  • Wine JJ (2007). Parasympathetic control of airway submucosal glands: Central reflexes and the airway intrinsic nervous system. Autonom Neurosci 133: 3554.
  • Yang H, Shelat AA, Guy RK, Gopinath VS, Ma T, Du K et al. (2003). Nanomolar affinity small molecule correctors of defective ΔF508-CFTR chloride channel gating. J Biol Chem 278: 3507935085.
  • Yerxa BR, Sabater JR, Davis CW, Stutts MJ, Lang-Furr M, Picher M et al. (2002). Pharmacology of INS37217 [P1-(uridine 5′)-P4-92-deoxycytidine 5′) tetraphosphate, tetrasodium salt], a next-generation P2Y2 receptor agonist for the treatment of cystic fibrosis. J Pharmacol Exp Ther 302: 871880.