SEARCH

SEARCH BY CITATION

References

  • Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR et al. (1996). Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84: 757767.
  • Chu YC, Guan Y, Skinner J, Raja SN, Johns RA, Tao YX (2005). Effect of genetic knockout or pharmacologic inhibition of neuronal nitric oxide synthase on complete Freund's adjuvant-induced persistent pain. Pain 119: 113123.
  • Collier TL, Waterhouse RN, Kassiou M (2007). Imaging sigma receptors: applications in drug development. Curr Pharm Des 13: 5172.
  • Duman EN, Kesim M, Kadioglu M, Ulku C, Kalyoncu NI, Yaris E (2006). Effect of gender on antinociceptive effect of paroxetine in hot plate test in mice. Prog Neuropsychopharmacol Biol Psychiatry 30: 292296.
  • Garthwaite J (2008). Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27: 27832802.
  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005). Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6: 150166.
  • Hylden JL, Wilcox GL (1980). Intrathecal morphine in mice: a new technique. Eur J Pharmacol 67: 313316.
  • Karlsson J, Fong KS, Hansson MJ, Elmer E, Csiszar K, Keep MF (2004). Life span extension and reduced neuronal death after weekly intraventricular cyclosporin injections in the G93A transgenic mouse model of amyotrophic lateral sclerosis. J Neurosurg 101: 128137.
  • Kim HW, Kwon YB, Roh DH, Yoon SY, Han HJ, Kim KW et al. (2006). Intrathecal treatment with sigma1 receptor antagonists reduces formalin-induced phosphorylation of NMDA receptor subunit 1 and the second phase of formalin test in mice. Br J Pharmacol 148: 490498.
  • Kim HW, Roh DH, Yoon SY, Seo HS, Kwon YB, Han HJ et al. (2008). Activation of the spinal sigma-1 receptor enhances NMDA-induced pain via PKC- and PKA-dependent phosphorylation of the NR1 subunit in mice. Br J Pharmacol 154: 11251134.
  • Koesling D, Russwurm M, Mergia E, Mullershausen F, Friebe A (2004). Nitric oxide-sensitive guanylyl cyclase: structure and regulation. Neurochem Int 45: 813819.
  • Kwon YB, Lee JD, Lee HJ, Han HJ, Mar WC, Kang SK et al. (2001). Bee venom injection into an acupuncture point reduces arthritis associated edema and nociceptive responses. Pain 90: 271280.
  • Lee JH, Wilcox GL, Beitz AJ (1992). Nitric oxide mediates Fos expression in the spinal cord induced by mechanical noxious stimulation. Neuroreport 3: 841844.
  • Levy D, Zochodne DW (2004). NO pain: potential roles of nitric oxide in neuropathic pain. Pain Pract 4: 1118.
  • Maurice T, Su TP (2009). The pharmacology of sigma-1 receptors. Pharmacol Ther 124: 195206.
  • Meller ST, Gebhart GF (1993). Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain 52: 127136.
  • Milano J, Oliveira SM, Rossato MF, Sauzem PD, Machado P, Beck P et al. (2008). Antinociceptive effect of novel trihalomethyl-substituted pyrazoline methyl esters in formalin and hot-plate tests in mice. Eur J Pharmacol 581: 8696.
  • Miyamoto T, Dubin AE, Petrus MJ, Patapoutian A (2009). TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice. PLoS ONE 4: e7596.
  • National Institute of Health (NIH) (1985). Guide for the Care and Use of Laboratory Animals. DHEW Publication (NIH), revised, Office of Science and Health Reports, DRR/NIH: Bethesda, MD.
  • Osuka K, Watanabe Y, Usuda N, Nakazawa A, Fukunaga K, Miyamoto E et al. (2002). Phosphorylation of neuronal nitric oxide synthase at Ser847 by CaM-KII in the hippocampus of rat brain after transient forebrain ischemia. J Cereb Blood Flow Metab 22: 10981106.
  • Osuka K, Watanabe Y, Usuda N, Atsuzawa K, Aoshima C, Yamauchi K et al. (2007). Phosphorylation of neuronal nitric oxide synthase at Ser847 in the nucleus intermediolateralis after spinal cord injury in mice. Neuroscience 145: 241247.
  • Palmer RM, Ashton DS, Moncada S (1988). Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664666.
  • Ping P, Takano H, Zhang J, Tang XL, Qiu Y, Li RC et al. (1999). Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits: a signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ Res 84: 587604.
  • de la Puente B, Nadal X, Portillo-Salido E, Sanchez-Arroyos R, Ovalle S, Palacios G et al. (2009). Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain 145: 294303.
  • Rameau GA, Chiu LY, Ziff EB (2004). Bidirectional regulation of neuronal nitric-oxide synthase phosphorylation at serine 847 by the N-methyl-D-aspartate receptor. J Biol Chem 279: 1430714314.
  • Roh DH, Kim HW, Yoon SY, Seo HS, Kwon YB, Kim KW et al. (2008a). Intrathecal administration of sigma-1 receptor agonists facilitates nociception: involvement of a protein kinase C-dependent pathway. J Neurosci Res 86: 36443654.
  • Roh DH, Kim HW, Yoon SY, Seo HS, Kwon YB, Kim KW et al. (2008b). Intrathecal injection of the sigma(1) receptor antagonist BD1047 blocks both mechanical allodynia and increases in spinal NR1 expression during the induction phase of rodent neuropathic pain. Anesthesiology 109: 879889.
  • Roh DH, Yoon SY, Seo HS, Kang SY, Moon JY, Song S et al. (2010). Sigma-1 receptor-induced increase in murine spinal NR1 phosphorylation is mediated by the PKCalpha and varepsilon, but not the PKCzeta, isoforms. Neurosci Lett 477: 9599.
  • Schmidtko A, Gao W, Konig P, Heine S, Motterlini R, Ruth P et al. (2008). cGMP produced by NO-sensitive guanylyl cyclase essentially contributes to inflammatory and neuropathic pain by using targets different from cGMP-dependent protein kinase I. J Neurosci 28: 85688576.
  • Schmidtko A, Tegeder I, Geisslinger G (2009). No NO, no pain? The role of nitric oxide and cGMP in spinal pain processing. Trends Neurosci 32: 339346.
  • Tanabe M, Nagatani Y, Saitoh K, Takasu K, Ono H (2009). Pharmacological assessments of nitric oxide synthase isoforms and downstream diversity of NO signaling in the maintenance of thermal and mechanical hypersensitivity after peripheral nerve injury in mice. Neuropharmacology 56: 702708.
  • Tao YX, Johns RA (2002). Activation and up-regulation of spinal cord nitric oxide receptor, soluble guanylate cyclase, after formalin injection into the rat hind paw. Neuroscience 112: 439446.
  • Xu L, Mabuchi T, Katano T, Matsumura S, Okuda-Ashitaka E, Sakimura K et al. (2007). Nitric oxide (NO) serves as a retrograde messenger to activate neuronal NO synthase in the spinal cord via NMDA receptors. Nitric Oxide 17: 1824.
  • Yonezawa T, Kurata R, Kimura M, Inoko H (2009). PKC delta and epsilon in drug targeting and therapeutics. Recent Pat DNA Gene Seq 3: 96101.
  • Yoon SY, Kwon YB, Kim HW, Roh DH, Seo HS, Han HJ et al. (2008). Bee venom injection produces a peripheral anti-inflammatory effect by activation of a nitric oxide-dependent spinocoeruleus pathway. Neurosci Lett 430: 163168.
  • Zhou C, Li C, Yu HM, Zhang F, Han D, Zhang GY (2008). Neuroprotection of gamma-aminobutyric acid receptor agonists via enhancing neuronal nitric oxide synthase (Ser847) phosphorylation through increased neuronal nitric oxide synthase and PSD95 interaction and inhibited protein phosphatase activity in cerebral ischemia. J Neurosci Res 86: 29732983.
  • Zhou L, Zhu DY (2009). Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20: 223230.