SEARCH

SEARCH BY CITATION

References

  • Ahn S, Shenoy SK, Wei H, Lefkowitz RJ (2004). Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 279: 3551835525.
  • Ahn S, Kim J, Hara MR, Ren XR, Lefkowitz RJ (2009). {beta}-Arrestin-2 mediates anti-apoptotic signaling through regulation of bad phosphorylation. J Biol Chem 284: 88558865.
  • Akishita M, Iwai M, Wu L, Zhang L, Ouchi Y, Dzau VJ et al. (2000). Inhibitory effect of angiotensin II type 2 receptor on coronary arterial remodeling after aortic banding in mice. Circulation 102: 16841689.
  • Alexander SPH, Mathie A, Peters JA (2009). Guide to Receptors and Channels (GRAC), 4th edition. Br J Pharmacol 158 (Suppl. 1): S1S254.
  • Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L et al. (2010). MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 16: 909914.
  • Andersen DC, Andersen P, Schneider M, Jensen HB, Sheikh SP (2009). Murine ‘cardiospheres’ are not a source of stem cells with cardiomyogenic potential. Stem Cells 27: 15711581.
  • Andersen DAJC, Schneider M, Nossent AY, Eskildsen TE, Hansen JL, Teisner B et al. (2010). MicroRNA-15a finetunes the level of Delta-like 1 homologue (DLK 1) in proliferating 3T3-L1 Preadipocytes. Exp Cell Res 316: 16811691.
  • Aplin M, Christensen GL, Schneider M, Heydorn A, Gammeltoft S, Kjolbye AL et al. (2007a). The angiotensin type 1 receptor activates extracellular signal-regulated kinases 1 and 2 by G protein-dependent and -independent pathways in cardiac myocytes and langendorff-perfused hearts. Basic Clin Pharmacol Toxicol 100: 289295.
  • Aplin M, Christensen GL, Schneider M, Heydorn A, Gammeltoft S, Kjolbye AL et al. (2007b). Differential extracellular signal-regulated kinases 1 and 2 activation by the angiotensin type 1 receptor supports distinct phenotypes of cardiac myocytes. Basic Clin Pharmacol Toxicol 100: 296301.
  • Aplin M, Christensen GL, Hansen JL (2008). Pharmacologic perspectives of functional selectivity by the angiotensin II type 1 receptor. Trends Cardiovasc Med 18: 305312.
  • Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281297.
  • Booz GW, Baker KM (1996). Role of type 1 and type 2 angiotensin receptors in angiotensin II-induced cardiomyocyte hypertrophy. Hypertension 28: 635640.
  • Busk PK, Hinrichsen R, Bartkova J, Hansen AH, Christoffersen TE, Bartek J et al. (2005). Cyclin D2 induces proliferation of cardiac myocytes and represses hypertrophy. Exp Cell Res 304: 149161.
  • Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nat Med 13: 613618.
  • Christensen GL, Kelstrup CD, Lyngso C, Sarwar U, Bogebo R, Sheikh SP et al. (2010a). Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9: 15401553.
  • Christensen GL, Knudsen S, Schneider M, Aplin M, Gammeltoft S, Sheikh SP et al. (2010b). AT(1) receptor Galphaq protein-independent signalling transcriptionally activates only a few genes directly, but robustly potentiates gene regulation from the beta2-adrenergic receptor. Mol Cell Endocrinol 331: 4956.
  • D'Amore A, Black MJ, Thomas WG (2005). The angiotensin II type 2 receptor causes constitutive growth of cardiomyocytes and does not antagonize angiotensin II type 1 receptor-mediated hypertrophy. Hypertension 46: 13471354.
  • DeWire SM, Kim J, Whalen EJ, Ahn S, Chen M, Lefkowitz RJ (2008). Beta-arrestin-mediated signaling regulates protein synthesis. J Biol Chem 283: 1061110620.
  • Dubey RK, Gillespie DG, Mi Z, Jackson EK (1997). Exogenous and endogenous adenosine inhibits fetal calf serum-induced growth of rat cardiac fibroblasts: role of A2B receptors. Circulation 96: 26562666.
  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8: R19.
  • Herr D, Rodewald M, Fraser HM, Hack G, Konrad R, Kreienberg R et al. (2008). Regulation of endothelial proliferation by the renin-angiotensin system in human umbilical vein endothelial cells. Reproduction 136: 125130.
  • Holloway AC, Qian H, Pipolo L, Ziogas J, Miura S, Karnik S et al. (2002). Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol Pharmacol 61: 768777.
  • Hunton DL, Barnes WG, Kim J, Ren XR, Violin JD, Reiter E et al. (2005). Beta-arrestin 2-dependent angiotensin II type 1A receptor-mediated pathway of chemotaxis. Mol Pharmacol 67: 12291236.
  • Hwang HW, Wentzel EA, Mendell JT (2009). Cell-cell contact globally activates microRNA biogenesis. Proc Natl Acad Sci U S A 106: 70167021.
  • van Kesteren CA, van Heugten HA, Lamers JM, Saxena PR, Schalekamp MA, Danser AH (1997). Angiotensin II-mediated growth and antigrowth effects in cultured neonatal rat cardiac myocytes and fibroblasts. J Mol Cell Cardiol 29: 21472157.
  • Khomenko T, Deng X, Jadus MR, Szabo S (2003). Effect of cysteamine on redox-sensitive thiol-containing proteins in the duodenal mucosa. Biochem Biophys Res Commun 309: 910916.
  • Lee J, Li Z, Brower-Sinning R, John B (2007). Regulatory circuit of human microRNA biogenesis. PLoS Comput Biol 3: e67.
  • Lee MH, El-Shewy HM, Luttrell DK, Luttrell LM (2008). Role of beta-arrestin-mediated desensitization and signaling in the control of angiotensin AT1a receptor-stimulated transcription. J Biol Chem 283: 20882097.
  • Lymperopoulos A, Rengo G, Zincarelli C, Kim J, Soltys S, Koch WJ (2009). An adrenal beta-arrestin 1-mediated signaling pathway underlies angiotensin II-induced aldosterone production in vitro and in vivo. Proc Natl Acad Sci U S A 106: 58255830.
  • Mehta PK, Griendling KK (2007). Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292: C82C97.
  • Miura S, Karnik SS (1999). Angiotensin II type 1 and type 2 receptors bind angiotensin II through different types of epitope recognition. J Hypertens 17: 397404.
  • Morinelli TA, Kendall RT, Luttrell LM, Walker LP, Ullian ME (2009). Angiotensin II-induced cyclooxygenase 2 expression in rat aorta vascular smooth muscle cells does not require heterotrimeric G protein activation. J Pharmacol Exp Ther 330: 118124.
  • Naga Prasad SV, Duan ZH, Gupta MK, Surampudi VS, Volinia S, Calin GA et al. (2009). Unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks. J Biol Chem 284: 2748727499.
  • Neyses L, Nouskas J, Luyken J, Fronhoffs S, Oberdorf S, Pfeifer U et al. (1993). Induction of immediate-early genes by angiotensin II and endothelin-1 in adult rat cardiomyocytes. J Hypertens 11: 927934.
  • Olson EN (2006). Gene regulatory networks in the evolution and development of the heart. Science 313: 19221927.
  • Revankar CM, Vines CM, Cimino DF, Prossnitz ER (2004). Arrestins block G protein-coupled receptor-mediated apoptosis. J Biol Chem 279: 2457824584.
  • van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316: 575579.
  • van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS et al. (2008). Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 105: 1302713032.
  • Simpson P (1983). Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alpha 1 adrenergic response. J Clin Invest 72: 732738.
  • Szekeres M, Turu G, Orient A, Szalai B, Supeki K, Cserzo M et al. (2009). Mechanisms of angiotensin II-mediated regulation of aldosterone synthase expression in H295R human adrenocortical and rat adrenal glomerulosa cells. Mol Cell Endocrinol 302: 244253.
  • Takasaki J, Saito T, Taniguchi M, Kawasaki T, Moritani Y, Hayashi K et al. (2004). A novel Galphaq/11-selective inhibitor. J Biol Chem 279: 4743847445.
  • Thomas WG, Qian H, Chang C-S KS (2000). Agonist-induced phosphorylation of the angiotensin II (AT1A) receptor requires generation of a conformation that is distinct from the inositol phosphate-signaling state. 1074/jbc.275.4.2893.J Biol Chem 275: 28932900.
  • Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW et al. (2007). MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116: 258267.
  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.
  • Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dillmann WH (1993). Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation 88: 28492861.
  • Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH et al. (2005). A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA 102: 1642616431.
  • Yuen T, Ruf F, Chu T, Sealfon SC (2009). Microtranscriptome regulation by gonadotropin-releasing hormone. Mol Cell Endocrinol 302: 1217.