SEARCH

SEARCH BY CITATION

References

  • Adelhorst K, Hedegaard BB, Knudsen LB, Kirk O (1994). Structure-activity studies of glucagon-like peptide-1. J Biol Chem 269: 62756278.
  • Ahn JM, Gitu PM, Medeiros M, Swift JR, Trivedi D, Hruby VJ (2001a). A new approach to search for the bioactive conformation of glucagon: positional cyclization scanning. J Med Chem 44: 31093116.
  • Ahn JM, Medeiros M, Trivedi D, Hruby VJ (2001b). Development of potent truncated glucagon antagonists. J Med Chem 44: 13721379.
  • Al-Sabah S, Donnelly D (2003). The positive charge at Lys-288 of the glucagon-like peptide-1 (GLP-1) receptor is important for binding the N-terminus of peptide agonists. FEBS Lett 553: 342346.
  • Bayliss WM, Starling EH (1902). The mechanism of pancreatic secretion. J Physiol 28: 325353.
  • Bisello A, Adams AE, Mierke DF, Pellegrini M, Rosenblatt M, Suva LJ et al. (1998). Parathyroid hormone-receptor interactions identified directly by photocross-linking and molecular modeling studies. J Biol Chem 273: 2249822505.
  • Chen Q, Pinon DI, Miller LJ, Dong M (2010). Spatial approximations between residues 6 and 12 in the amino-terminal region of glucagon-like peptide 1 and its receptor: a region critical for biological activity. J Biol Chem 285: 2450824518.
  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS et al. (2007). High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318: 12581265.
  • Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA et al. (2010). Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330: 10911095.
  • Di Paolo E, De Neef P, Moguilevsky N, Petry H, Bollen A, Waelbroeck M et al. (1998). Contribution of the second transmembrane helix of the secretin receptor to the positioning of secretin. FEBS Lett 424: 207210.
  • Di Paolo E, Vilardaga JP, Petry H, Moguilevsky N, Bollen A, Robberecht P et al. (1999). Role of charged amino acids conserved in the vasoactive intestinal polypeptide/secretin family of receptors on the secretin receptor functionality. Peptides 20: 11871193.
  • Dong M, Miller LJ (2002). Molecular pharmacology of the secretin receptor. Receptors Channels 8: 189200.
  • Dong M, Wang Y, Hadac EM, Pinon DI, Holicky E, Miller LJ (1999a). Identification of an interaction between residue 6 of the natural peptide ligand and a distinct residue within the amino-terminal tail of the secretin receptor. J Biol Chem 274: 1916119167.
  • Dong M, Wang Y, Pinon DI, Hadac EM, Miller LJ (1999b). Demonstration of a direct interaction between residue 22 in the carboxyl-terminal half of secretin and the amino-terminal tail of the secretin receptor using photoaffinity labeling. J Biol Chem 274: 903909.
  • Dong M, Asmann YW, Zang M, Pinon DI, Miller LJ (2000). Identification of two pairs of spatially approximated residues within the carboxyl terminus of secretin and its receptor. J Biol Chem 275: 2603226039.
  • Dong M, Zang M, Pinon DI, Li Z, Lybrand TP, Miller LJ (2002). Interaction among four residues distributed through the secretin pharmacophore and a focused region of the secretin receptor amino terminus. Mol Endocrinol 16: 24902501.
  • Dong M, Li Z, Zang M, Pinon DI, Lybrand TP, Miller LJ (2003). Spatial approximation between two residues in the mid-region of secretin and the amino terminus of its receptor. Incorporation of seven sets of such constraints into a three-dimensional model of the agonist-bound secretin receptor. J Biol Chem 278: 4830048312.
  • Dong M, Li Z, Pinon DI, Lybrand TP, Miller LJ (2004a). Spatial approximation between the amino terminus of a peptide agonist and the top of the sixth transmembrane segment of the secretin receptor. J Biol Chem 279: 28942903.
  • Dong M, Pinon DI, Cox RF, Miller LJ (2004b). Molecular approximation between a residue in the amino-terminal region of calcitonin and the third extracellular loop of the class B G protein-coupled calcitonin receptor. J Biol Chem 279: 3117731182.
  • Dong M, Lam PC, Gao F, Hosohata K, Pinon DI, Sexton PM et al. (2007). Molecular approximations between residues 21 and 23 of secretin and its receptor: development of a model for peptide docking with the amino terminus of the secretin receptor. Mol Pharmacol 72: 280290.
  • Dong M, Lam PC, Pinon DI, Sexton PM, Abagyan R, Miller LJ (2008). Spatial approximation between secretin residue five and the third extracellular loop of its receptor provides new insight into the molecular basis of natural agonist binding. Mol Pharmacol 74: 413422.
  • Dong M, Lam PC, Pinon DI, Orry A, Sexton PM, Abagyan R et al. (2010). Secretin occupies a single protomer of the homodimeric secretin receptor complex: insights from photoaffinity labeling studies using dual sites of covalent attachment. J Biol Chem 285: 99199931.
  • Dong M, Le A, Te JA, Pinon DI, Bordner AJ, Miller LJ (2011). Importance of each residue within secretin for receptor binding and biological activity. Biochemistry 50: 29832993.
  • Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP et al. (2005). International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev 57: 279288.
  • Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003). The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63: 12561272.
  • Frimurer TM, Bywater RP (1999). Structure of the integral membrane domain of the GLP1 receptor. Proteins 35: 375386.
  • Gao F, Harikumar KG, Dong M, Lam PC, Sexton PM, Christopoulos A et al. (2009). Functional importance of a structurally distinct homodimeric complex of the family B G protein-coupled secretin receptor. Mol Pharmacol 76: 264274.
  • Gardella TJ, Juppner H, Wilson AK, Keutmann HT, Abou-Samra AB, Segre GV et al. (1994). Determinants of [Arg2]PTH-(1-34) binding and signaling in the transmembrane region of the parathyroid hormone receptor. Endocrinology 135: 11861194.
  • Grace CR, Perrin MH, DiGruccio MR, Miller CL, Rivier JE, Vale WW et al. (2004). NMR structure and peptide hormone binding site of the first extracellular domain of a type B1 G protein-coupled receptor. Proc Natl Acad Sci USA 101: 1283612841.
  • Grace CR, Perrin MH, Gulyas J, Digruccio MR, Cantle JP, Rivier JE et al. (2007). Structure of the N-terminal domain of a type B1 G protein-coupled receptor in complex with a peptide ligand. Proc Natl Acad Sci USA 104: 48584863.
  • ter Haar E, Koth CM, Abdul-Manan N, Swenson L, Coll JT, Lippke JA et al. (2010). Crystal structure of the ectodomain complex of the CGRP receptor, a class-B GPCR, reveals the site of drug antagonism. Structure 18: 10831093.
  • Harikumar KG, Miller LJ (2009). Use of fluorescence indicators in receptor ligands. Methods Mol Biol 552: 279291.
  • Harikumar KG, Hosohata K, Pinon DI, Miller LJ (2006a). Use of probes with fluorescence indicator distributed throughout the pharmacophore to examine the peptide agonist-binding environment of the family B G protein-coupled secretin receptor. J Biol Chem 281: 25432550.
  • Harikumar KG, Morfis MM, Lisenbee CS, Sexton PM, Miller LJ (2006b). Constitutive formation of oligomeric complexes between family B G protein-coupled vasoactive intestinal polypeptide and secretin receptors. Mol Pharmacol 69: 363373.
  • Harikumar KG, Pinon DI, Miller LJ (2007). Transmembrane segment IV contributes a functionally important interface for oligomerization of the Class II G protein-coupled secretin receptor. J Biol Chem 282: 3036330372.
  • Harikumar KG, Happs RM, Miller LJ (2008a). Dimerization in the absence of higher-order oligomerization of the G protein-coupled secretin receptor. Biochim Biophys Acta 1778: 25552563.
  • Harikumar KG, Morfis MM, Sexton PM, Miller LJ (2008b). Pattern of intra-family hetero-oligomerization involving the G-protein-coupled secretin receptor. J Mol Neurosci 36: 279285.
  • Harikumar KG, Simms J, Christopoulos G, Sexton PM, Miller LJ (2009). Molecular basis of association of receptor activity-modifying protein 3 with the family B G protein-coupled secretin receptor. Biochemistry 48: 1177311785.
  • Harikumar KG, Ball AM, Sexton PM, Miller LJ (2010). Importance of lipid-exposed residues in transmembrane segment four for family B calcitonin receptor homo-dimerization. Regul Pept 164: 113119.
  • Hay DL, Poyner DR, Sexton PM (2006). GPCR modulation by RAMPs. Pharmacol Ther 109: 173197.
  • Holtmann MH, Hadac EM, Miller LJ (1995). Critical contributions of amino-terminal extracellular domains in agonist binding and activation of secretin and vasoactive intestinal polypeptide receptors. Studies of chimeric receptors. J Biol Chem 270: 1439414398.
  • Holtmann MH, Ganguli S, Hadac EM, Dolu V, Miller LJ (1996). Multiple extracellular loop domains contribute critical determinants for agonist binding and activation of the secretin receptor. J Biol Chem 271: 1494414949.
  • Igarashi H, Ito T, Hou W, Mantey SA, Pradhan TK, Ulrich CD et al. (2002a). Elucidation of vasoactive intestinal peptide pharmacophore for VPAC(1) receptors in human, rat, and guinea pig. J Pharmacol Exp Ther 301: 3750.
  • Igarashi H, Ito T, Pradhan TK, Mantey SA, Hou W, Coy DH et al. (2002b). Elucidation of the vasoactive intestinal peptide pharmacophore for VPAC(2) receptors in human and rat and comparison to the pharmacophore for VPAC(1) receptors. J Pharmacol Exp Ther 303: 445460.
  • Inooka H, Ohtaki T, Kitahara O, Ikegami T, Endo S, Kitada C et al. (2001). Conformation of a peptide ligand bound to its G-protein coupled receptor. Nat Struct Biol 8: 161165.
  • Ishihara T, Nakamura S, Kaziro Y, Takahashi T, Takahashi K, Nagata S (1991). Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J 10: 16351641.
  • Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR et al. (2008). The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322: 12111217.
  • Koth CM, Abdul-Manan N, Lepre CA, Connolly PJ, Yoo S, Mohanty AK et al. (2010). Refolding and characterization of a soluble ectodomain complex of the calcitonin gene-related peptide receptor. Biochemistry 49: 18621872.
  • Lisenbee CS, Miller LJ (2006). Secretin receptor oligomers form intracellularly during maturation through receptor core domains. Biochemistry 45: 82168226.
  • Lisenbee CS, Dong M, Miller LJ (2005). Paired cysteine mutagenesis to establish the pattern of disulfide bonds in the functional intact secretin receptor. J Biol Chem 280: 1233012338.
  • Mann R, Nasr N, Hadden D, Sinfield J, Abidi F, Al-Sabah S et al. (2007). Peptide binding at the GLP-1 receptor. Biochem Soc Trans 35: 713716.
  • Mayo KE, Miller LJ, Bataille D, Dalle S, Goke B, Thorens B et al. (2003). International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol Rev 55: 167194.
  • Miller LJ, Dong M, Harikumar KG, Gao F (2007). Structural basis of natural ligand binding and activation of the Class II G-protein-coupled secretin receptor. Biochem Soc Trans 35: 709712.
  • Milligan G, White JH (2001). Protein-protein interactions at G-protein-coupled receptors. Trends Pharmacol Sci 22: 513518.
  • Milligan G, Ramsay D, Pascal G, Carrillo JJ (2003). GPCR dimerisation. Life Sci 74: 181188.
  • Murage EN, Schroeder JC, Beinborn M, Ahn JM (2008). Search for alpha-helical propensity in the receptor-bound conformation of glucagon-like peptide-1. Bioorg Med Chem 16: 1010610112.
  • Neumann JM, Couvineau A, Murail S, Lacapere JJ, Jamin N, Laburthe M (2008). Class-B GPCR activation: is ligand helix-capping the key? Trends Biochem Sci 33: 314319.
  • Nicole P, Lins L, Rouyer-Fessard C, Drouot C, Fulcrand P, Thomas A et al. (2000). Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J Biol Chem 275: 2400324012.
  • Parthier C, Kleinschmidt M, Neumann P, Rudolph R, Manhart S, Schlenzig D et al. (2007). Crystal structure of the incretin-bound extracellular domain of a G protein-coupled receptor. Proc Natl Acad Sci USA 104: 1394213947.
  • Parthier C, Reedtz-Runge S, Rudolph R, Stubbs MT (2009). Passing the baton in class B GPCRs: peptide hormone activation via helix induction? Trends Biochem Sci 34: 303310.
  • Pellegrini M, Bisello A, Rosenblatt M, Chorev M, Mierke DF (1998). Binding domain of human parathyroid hormone receptor: from conformation to function. Biochemistry 37: 1273712743.
  • Pioszak AA, Xu HE (2008). Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc Natl Acad Sci USA 105: 50345039.
  • Pioszak AA, Parker NR, Suino-Powell K, Xu HE (2008). Molecular recognition of corticotropin-releasing factor by its G-protein-coupled receptor CRFR1. J Biol Chem 283: 3290032912.
  • Piserchio A, Bisello A, Rosenblatt M, Chorev M, Mierke DF (2000). Characterization of parathyroid hormone/receptor interactions: structure of the first extracellular loop. Biochemistry 39: 81538160.
  • Pozvek G, Hilton JM, Quiza M, Houssami S, Sexton PM (1997). Structure/function relationships of calcitonin analogues as agonists, antagonists, or inverse agonists in a constitutively activated receptor cell system. Mol Pharmacol 51: 658665.
  • Robberecht P, Conlon TP, Gardner JD (1976). Interaction of porcine vasoactive intestinal peptide with dispersed pancreatic acinar cells from the guinea pig. Structural requirements for effects of vasoactive intestinal peptide and secretin on cellular adenosine 3′:5′-monophosphate. J Biol Chem 251: 46354639.
  • Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH et al. (2011). Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469: 236240.
  • Runge S, Wulff BS, Madsen K, Brauner-Osborne H, Knudsen LB (2003). Different domains of the glucagon and glucagon-like peptide-1 receptors provide the critical determinants of ligand selectivity. Br J Pharmacol 138: 787794.
  • Runge S, Thogersen H, Madsen K, Lau J, Rudolph R (2008). Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain. J Biol Chem 283: 1134011347.
  • Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW et al. (2008). Crystal structure of opsin in its G-protein-interacting conformation. Nature 455: 497502.
  • Solano RM, Langer I, Perret J, Vertongen P, Juarranz MG, Robberecht P et al. (2001). Two basic residues of the h-VPAC1 receptor second transmembrane helix are essential for ligand binding and signal transduction. J Biol Chem 276: 10841088.
  • Sun C, Song D, Davis-Taber RA, Barrett LW, Scott VE, Richardson PL et al. (2007). Solution structure and mutational analysis of pituitary adenylate cyclase-activating polypeptide binding to the extracellular domain of PAC1-RS. Proc Natl Acad Sci USA 104: 78757880.
  • Taylor JW, Jin QK, Sbacchi M, Wang L, Belfiore P, Garnier M et al. (2002). Side-chain lactam-bridge conformational constraints differentiate the activities of salmon and human calcitonins and reveal a new design concept for potent calcitonin analogues. J Med Chem 45: 11081121.
  • Turner JT, Jones SB, Bylund DB (1986). A fragment of vasoactive intestinal peptide, VIP(10-28), is an antagonist of VIP in the colon carcinoma cell line, HT29. Peptides 7: 849854.
  • Ulrich CD 2nd, Holtmann M, Miller LJ (1998). Secretin and vasoactive intestinal peptide receptors: members of a unique family of G protein-coupled receptors. Gastroenterology 114: 382397.
  • Underwood CR, Garibay P, Knudsen LB, Hastrup S, Peters GH, Rudolph R et al. (2010). Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. J Biol Chem 285: 723730.
  • Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R et al. (2008). Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454: 486491.
  • Willick GE, Morley P, Whitfield JF (2004). Constrained analogs of osteogenic peptides. Curr Med Chem 11: 28672881.
  • Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V et al. (2010). Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330: 10661071.
  • Zang M, Dong M, Pinon DI, Ding XQ, Hadac EM, Li Z et al. (2003). Spatial approximation between a photolabile residue in position 13 of secretin and the amino terminus of the secretin receptor. Mol Pharmacol 63: 9931001.