SEARCH

SEARCH BY CITATION

References

  • Adelhorst K, Hedegaard BB, Knudsen LB, Kirk O (1994). Structure-activity studies of glucagon-like peptide-1. J Biol Chem 269: 62756278.
  • Ahrén B (2011). GLP-1 for type 2 diabetes. Exp Cell Res 317: 12391245.
  • Al-Sabah S, Donnelly D (2003a). A model for receptor-peptide binding at the glucagon-like peptide-1 (GLP-1) receptor through the analysis of truncated ligands and receptors. Br J Pharmacol 140: 339346.
  • Al-Sabah S, Donnelly D (2003b). The positive charge at Lys-288 of the glucagon-like peptide-1 (GLP-1) receptor is important for binding the N-terminus of peptide agonists. FEBS Lett 553: 342346.
  • Al-Sabah S, Donnelly D (2004). The primary ligand-binding interaction at the GLP-1 receptor is via the putative helix of the peptide agonists. Protein Pept Lett 11: 914.
  • Andersen NH, Brodsky Y, Neidigh JW, Prickett KS (2002). Medium-dependence of the secondary structure of exendin-4 and glucagon-like-peptide-1. Bioorg Med Chem 10: 7985.
  • Bahekar RH, Jain MR, Gupta AA, Goel A, Jadav PA, Patel DN et al. (2007). Synthesis and antidiabetic activity of 3,6,7-trisubstituted-2-(1H-imidazol-2-ylsulfanyl)quinoxalines and quinoxalin-2-yl isothioureas. Arch Pharm (Weinheim) 340: 359366.
  • Baldwin JM (1993). The probable arrangement of the helices in G protein-coupled receptors. EMBO J 12: 16931703.
  • Bazarsuren A, Grauschopf U, Wozny M, Reusch D, Hoffmann E, Schaefer W et al. (2002). In vitro folding, functional characterization, and disulfide pattern of the extracellular domain of human GLP-1 receptor. Biophys Chem 96: 305318.
  • Beinborn M, Worrall CI, McBride EW, Kopin AS (2005). A human glucagon-like peptide-1 receptor polymorphism results in reduced agonist responsiveness. Regul Pept 130: 16.
  • Bergwitz C, Gardella TJ, Flannery MR, Potts JT, Kronenberg HM, Goldring SR et al. (1996). Full activation of chimeric receptors by hybrids between parathyroid hormone and calcitonin. J Biol Chem 271: 2646926472.
  • Burcelin R, Dolci W, Thorens B (1999). Long-lasting antidiabetic effect of a Dipeptidyl peptidase IV-resistant analog of glucagon-like peptide-1. Metabolism 48: 252258.
  • Chen D, Liao J, Li N, Zhou C, Liu Q, Wang G et al. (2007). A non-peptidic agonist of glucagon-like peptide 1 receptors with efficacy in diabetic db/db mice. Proc Natl Acad Sci U S A 104: 943948.
  • Chen Q, Pinon DI, Miller LJ, Dong M (2009). Molecular basis for glucagon-like peptide 1 docking to its intact receptor studied with carboxyl-terminal photolabile probes. J Biol Chem 284: 3413534144.
  • Chen Q, Miller LJ, Dong M (2010a). Role of N-linked glycosylation in biosynthesis, trafficking, and function of the human glucagon-like peptide 1 receptor. Am J Physiol Endocrinol Metab 299: E62E68.
  • Chen Q, Pinon DI, Miller LJ, Dong M (2010b). Spatial approximations between residues 6 and 12 in the amino-terminal region of glucagon-like peptide 1 and its receptor. J Biol Chem 285: 2450824518.
  • Coopman K, Huang Y, Johnston N, Bradley SJ, Wilkinson GF, Willars GB (2010). Comparative effects of the endogenous agonist glucagon-like peptide-1 (GLP-1)-(7-36) amide and the small-molecule ago-allosteric agent ‘Compound 2’ at the GLP-1 receptor. J Pharmacol Exp Ther 334: 795808.
  • Cornu M, Thorens B (2009). GLP-1 protects beta-cells against apoptosis by enhancing the activity of an IGF-2/IGF1-receptor autocrine loop. Islets 1: 280282.
  • D'Alessio DA, Kahn SE, Leusner CR, Ensinck JW (1994). Glucagon-like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal. J Clin Invest 93: 22632266.
  • D'Alessio DA, Prigeon RL, Ensinck JW (1995). Enteral enhancement of glucose disposition by both insulin-dependant and insulin-independent processes. A physiological role of glucagon-like peptide I. Diabetes 44: 14331437.
  • Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, Gidda J et al. (2009). A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol 5: 749757.
  • Day JW, Li P, Patterson JT, Chabenne J, DiMarchi Chabenne M, Gelfanov VM et al. (2010). Charge inversion at position 68 of the glucagon and glucagon-like peptide-1 receptors supports selectivity in hormone action. J Pept Sci 17: 218225.
  • Deacon CF, Johnsen AH, Holst JJ (1995). Degradation of glucagon-like peptide01 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 80: 952957.
  • Deacon CF, Knudsen LB, Madsen K, Wiberg FC, Jacobsen O, Holst JJ (1998). Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Diabetologia 41: 271278.
  • Devigny C, Perez-Balderas F, Hoogeland B, Cuboni S, Wachtel R, Mauch CP et al. (2011). Biomimetic screening of class-B G protein-coupled receptors. J Am Chem Soc 133: 89278933.
  • Dillon JS, Tanizawa Y, Wheeler MB, Leng X-H, Ligon BB, Rabin DU et al. (1993). Cloning and functional expression of the human glucagon-like peptide-1 (GLP-1) receptor. Endocrinology 133: 19071910.
  • Dong M, Pinon DI, Asmann YW, Miller LJ (2006). Possible endogenous agonist mechanism for the activation of secretin family G protein-coupled receptors. Mol Pharm 70: 206213.
  • Dong M, Gao F, Pinon DI, Miller LJ (2008). Insights into the structural basis of endogenous agonist activation of family B G protein-coupled receptors. Mol Endocrinol 22: 14891499.
  • Donnelly D (1997). The arrangement of the transmembrane helices in the secretin receptor family of G-protein-coupled receptors. FEBS Lett 409: 431436.
  • Donnelly D, Johnson MS, Blundell TL, Saunders J (1989). An analysis of the periodicity of conserved residues in sequence alignments of G-protein coupled receptors. FEBS Lett 251: 109116.
  • Donnelly D, Findlay JBC, Blundell TL (1994). The evolution and structure of aminergic G protein-coupled receptors. Receptors Channels 2: 6178.
  • Doyle ME, Egan JM (2007). Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 113: 546593.
  • Doyle ME, Theodorakis MJ, Holloway HW, Bernier M, Greig NH, Egan JM (2003). The importance of the nine-amino acid C-terminal sequence of exendin-4 for binding to the GLP-1 receptor and for biological activity. Regul Pept 114: 153158.
  • Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF (1987). Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A 84: 34343438.
  • Edwards CMB, Todd JF, Mahmoudi M, Wang Z, Wang RM, Ghatei MA et al. (1999). Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans. Diabetes 48: 8693.
  • Egan JM, Meneilly GS, Habener JF, Elahi D (2002). Glucagon-like peptide-1 augments insulin-mediated glucose uptake in the obese state. J Clin Endocrinol Metab 87: 37683773.
  • Elahi D, Egan JM, Shannon RP, Meneilly GS, Khatri A, Habener JF et al. (2008). GLP-1 (9-36) amide, cleavage product of GLP-1 (7-36) amide, is a glucoregulatory peptide. Obesity 16: 15011509.
  • Eng J, Andrews PC, Kleinman WA, Singh L, Raufman J-P (1990). Purification and structure of exendin-3, a new pancreatic secretagogue isolated from Heloderma horridum venom. J Biol Chem 265: 2025920262.
  • Eng J, Kleinman WA, Singh L, Singh G, Raufman J-P (1992). Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. J Biol Chem 267: 74027405.
  • Flint A, Raben A, Astrup A, Holst JJ (1998). Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 101: 515520.
  • Frimurer TM, Bywater RP (1999). Structure of the intergral membrane domain of the GLP1 receptor. Proteins 35: 375386.
  • Gallwitz B, Schmidt WE, Conlon JM, Creutzfeldt W (1990). Glucagon-like peptide-1 (7-36) amide: characterization of the domain responsible for binding to its receptor on rat insulinoma RINm5F cells. J Mol Endocrinol 5: 3339.
  • Gallwitz B, Witt M, Paetzold G, Morays-Wortmann C, Zimmermann B, Eckart K et al. (1994). Structure/activity characterization of glucagon-like peptide-1. Eur J Biochem 225: 11511156.
  • Göke R, Fehmann H-C, Linn T, Schmidt H, Krause M, Eng J et al. (1993). Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting β-cells. J Biol Chem 268: 1965019655.
  • Göke R, Just R, Lankat-Buttgereit B, Göke B (1994). Glycosylation of the GLP-1 receptor is a prerequisite for regular receptor function. Peptides 15: 675681.
  • Gong N, Ma A-N, Zhang L-J, Luo X-S, Zhang Y-H, Xu M et al. (2011). Site-specific PEGylation of exenatide analogues markedly improved their glucoregulatory activity. Br J Pharmacol 163: 399412.
  • Graziano MP, Hey PJ, Borkowski D, Chicchi GG, Strader CD (1993). Cloning and functional expression of a human glucagon-like peptide-1 receptor. Biochem Biophys Res Commun 196: 141146.
  • Hällbrink M, Holmqvist T, Olsson M, Östenson C-G, Efendic S, Langel Ü (2001). Different domains in the third intracellular loop of the GLP-1 receptor are responsible for Gαs and Gαi/Gαo activation. Biochim Biophys Acta 1546: 7986.
  • Hansen L, Deacon CF, Ørskov C, Holst JJ (1999). Glucagon-LikePeptide-1-(7-36) amide is transformed to glucagon-like peptide-1-(9-36) amide by Dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 140: 53565363.
  • Hareter A, Hoffman E, Bode H-P, Göke B, Göke R (1997). The positive charge of the imidazole side chain of Histidine7 is crucial for GLP-1 action. Endocr J 44: 701705.
  • Harikumar KG, Pinon DI, Miller LJ (2007). Transmembrane segment IV contributes a functionally important interface for oligomerization of the class II G protein-coupled secretin receptor. J Biol Chem 282: 3036330372.
  • Harikumar KG, Ball AM, Sexton PM, Miller LJ (2010). Importance of lipid-exposed residues in transmembrane segment four for family B calcitonin receptor homo-dimerization. Regul Pept 164: 113119.
  • Heller RS, Kieffer TJ, Habener JF (1996). Point mutations in the first and third intracellular loops of the glucagon-like peptide-1 receptor alter intracellular signaling. Biochem Biophys Res Commun 223: 624632.
  • Hjorth SA, Schwartz TW (1996). Glucagon and GLP-1 receptors: lessons from chimeric ligands and receptors. Acta Physiol Scand 157: 343345.
  • Hjorth SA, Adelhorst K, Brogaard Pedersen B, Kirk O, Schwartz TW (1994). Glucagon and glucagon-like peptide 1: selective receptor recognition via distinct peptide epitopes. J Biol Chem 269: 3012130124.
  • Hoare SRJ (2005). Mechanisms of peptide and nonpeptide ligand binding to Class B G-protein-coupled receptors. Drug Discov Today 10: 417427.
  • Holst JJ, Ørskov C, Vagn Nielsen O, Schwartz TW (1987). Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett 211: 169174.
  • Huang Y, Wilkinson GF, Willars GB (2010). Role of the signal peptide in the synthesis and processing of the glucagon-like peptide-1 receptor. Br J Pharmacol 159: 237251.
  • Iltz JL, Baker DE, Setter SM, Campbell RK (2006). Exenatide: an incretin mimetic for the treatment of type 2 diabetes mellitus. Clin Ther 28: 652665.
  • Irwin DM, Satkunarajah M, Wen Y, Brubaker PL, Pederson RA, Wheeler MB (1997). The Xenopus proglucagon gene encodes novel GLP-1-like peptides with insulinotropic properties. Proc Natl Acad Sci U S A 94: 79157920.
  • Irwin N, Flatt PR, Patterson S, Green BD (2010). Insulin-releasing and metabolic effects of small molecule GLP-1 receptor agonist 6, 7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline. Eur J Pharmacol 628: 268273.
  • Knudsen LB, Pridal L (1996). Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur J Pharmacol 318: 429435.
  • Knudsen LB, Kiel D, Teng M, Behrens C, Bhumralkar D, Kodra JT et al. (2007). Small-molecule agonists for the glucagon-like peptide 1 receptor. Proc Natl Acad Sci U S A 104: 937942.
  • Kolligs F, Fehmann H-C, Göke R, Göke B (1995). Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9-36) amide. Diabetes 44: 1619.
  • Koole C, Wootten D, Simms J, Valant C, Sridhar R, Woodman OL et al. (2010). Allosteric ligands of the glucagon-like peptide 1 receptor (GLP-1R) differentially modulate endogenous and exogenous peptide responses in a pathway-selective manner: implications for drug screening. Mol Pharmacol 78: 456465.
  • Kreymann B, Williams G, Ghatei MA, Bloom SR (1987). Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 330: 13001304.
  • Lin F, Wang R (2009). Molecular modelling of the three-dimensional structure of GLP-IR and its interactions with several agonists. J Mol Model 15: 5365.
  • López de Maturana R, Donnelly D (2002). The glucagon-like peptide-1 receptor binding site for the N-terminus of GLP-1 requires polarity at Asp198 rather than negative charge. FEBS Lett 530: 244248.
  • López de Maturana R, Willshaw A, Kuntzsch A, Rudolph R, Donnelly D (2003). The isolated N-terminal domain of the Glucagon-like Peptide-1 (GLP-1) receptor binds exendin peptides with much higher affinity than GLP-1. J Biol Chem 278: 1019510200.
  • López de Maturana R, Treece-Birch J, Abidi F, Findlay JB, Donnelly D (2004). Met-204 and Tyr-205 are together important for binding GLP-1 receptor agonists but not their N-terminally truncated analogues. Protein Pept Lett 11: 1522.
  • Mann R, Nasr N, Hadden D, Sinfield J, Abidi F, Al-Sabah S et al. (2007). Peptide binding at the GLP-1 receptor. Biochem Soc Trans 35: 713716.
  • Mann RJ, Al-Sabah S, López de Maturana R, Sinfield JK, Donnelly D (2010a). Functional coupling of Cys-226 and Cys-296 in the glucagon-like peptide-1 (GLP-1) receptor indicates a disulfide bond that is close to the activation pocket. Peptides 31: 22892293.
  • Mann RJ, Nasr NE, Sinfield JK, Paci E, Donnelly D (2010b). The major determinant of exendin-4/glucagon-like peptide 1 differential affinity at the rat glucagon-like peptide 1 receptor N-terminal domain is a hydrogen bond from SER-32 of exendin-4. Br J Pharmacol 160: 19731984.
  • Mapelli C, Natarajan SI, Meyer JP, Bastos MM, Bernatowicz MS, Lee VG et al. (2009). Eleven amino acid glucagon-like peptide-1 receptor agonists with antidiabetic activity. J Med Chem 52: 77887799.
  • Mathi SK, Chan Y, Li X, Wheeler MB (1997). Scanning of the Glucagon-Like Peptide-1 Receptor localizes G protein-activating determinants primarily to the N terminus of the third intracellular loop. Mol Endocrinol 11: 424432.
  • McIntyre N, Holdsworth CD, Turner DS (1964). New interpretation of oral glucose tolerance. Lancet 284: 2021.
  • Miller LJ, Chen Q, Lam PC-H, Pinon DI, Sexton PM, Abagyan R et al. (2011). Refinement of glucagon-like peptide 1 docking to its intact receptor using mid-region photolabile probes and molecular modeling. J Biol Chem 286: 1589515907.
  • Mojsov S (1992). Structural requirements for biological activity of glucagon-like peptide-I. Int J Peptide Protein Res 40: 333343.
  • Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF (1986). Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem 261: 1188011889.
  • Mojsov S, Weir GC, Habener JF (1987). Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79: 616619.
  • Montrose-Rafizadeh C, Yang H, Rodgers BD, Beday A, Pritchette LA, Eng J (1997). High potency antagonists of the pancreatic glucagon-like peptide-1 receptor. J Biol Chem 272: 2120121206.
  • Murage EN, Schroeder JC, Beinborn M, Ahn J-M (2008). Search for alpha-helical propensity in the receptor-bound conformation of glucagon-like peptide-1. Bioorg Med Chem 16: 1010610112.
  • Murage EN, Gao G, Bisello A, Ahn J-M (2010). Development of potent glucagon-like peptide-1 agonists with high enzyme stability via introduction of multiple lactam bridges. J Med Chem 53: 64126420.
  • Nathan DM, Schreiber E, Fogel H, Majsov S, Habener JF (1992). Insuilinotropic action of glucagonlike peptide-I-(7-37) in diabetic and nondiabetic subjects. Diabetes Care 15: 270276.
  • Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, Erbert R et al. (1986). Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 63: 492498.
  • Nauck MA, Heimesaat MM, Ørskov C, Holst JJ, Erbert R, Creutzfeldt W (1993). Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 91: 301307.
  • Nauck MA, Wollschläger D, Werner J, Holst JJ, Ørskov C, Creutzfeldt W et al. (1996). Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7-36 amide]) in patients with NIDDM. Diabetologia 39: 15461553.
  • Nauck MA, Niedereichholz U, Ettler R, Holst JJ, Ørskov C, Ritzel R et al. (1997). Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 273: E981E988.
  • Neidigh JW, Andersen NH (2002). Peptide conformational changes induced by tryptophan-phosphocholine interactions in a micelle. Biopolymers 65: 354361.
  • Neidigh JW, Fesinmeyer RW, Prickett KS, Andersen NH (2001). Exendin-4 and glucagon-like-peptide-1: NMR structural comparisons in the solution and micelle-associated states. Biochemistry 40: 1318813200.
  • Neidigh JW, Fesinmeyer RM, Andersen NH (2002). Designing a 20-residue protein. Nat Struct Biol 9: 425430.
  • Neumann J-M, Couvineau A, Murail S, Lacapère J-J, Jamin N, Laburthe M (2008). Class-B GPCR activation: is ligand helix-capping the key? Trends Biochem Sci 33: 314319.
  • Neumiller JJ, Campbell RK (2009). Liraglutide: a once-daily incretin mimetic for the treatment of type 2 diabetes mellitus. Ann Pharmacother 43: 14331444.
  • Ørskov C, Nielsen JH (1988). Truncated glucagon-like peptide-1 (proglucagon 78-107 amide), an intestinal insulin-releasing peptide, has specific receptors on rat insulinoma cells (RIN 5AH). FEBS Lett 229: 175178.
  • Ørskov C, Wettergren A, Holst JJ (1993). Biological effects and metabolic rates of glucagon-like peptide-1 7-36 amide and glucagon-like peptide-1 7-37 in healthy subjects are indistinguishable. Diabetes 42: 658661.
  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fo BA et al. (2000). Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289: 739745.
  • Parker JC, Andrews KM, Rescek DM, Massefski W, Andrews GC, Contillo LG et al. (1998). Structure-function analysis of a series of glucagon-like peptide-1 analogs. J Pept Res 52: 398409.
  • Parthier C, Reedtz-Runge S, Rudoloh R, Stubbs MT (2009). Passing the baton in class B GPCRs: peptide hormone activation via helix induction? Trends Biochem Sci 34: 303310.
  • Patterson JT, Day JW, Gelfanov VM, DiMarchi RD (2011a). Functional association of the N-terminal residues with the central region in glucagon-related peptides. J Pept Sci 17: 659666.
  • Patterson JT, Ottaway N, Gelfanov VM, Smiley DL, Perez-Tilve D, Pfluger PT et al. (2011b). A novel human-based receptor antagonist of sustained action reveals body weight control by endogenous GLP-1. ACS Chem Biol 6: 135145.
  • Perfetti R, Hui H (2004). The role of GLP-1 in the life and death of pancreatic beta cells. Horm Metab Res 36: 804810.
  • Prévost M, Vertongen P, Raussens V, Roberts DJ, Cnuddle J, Perret J et al. (2010). Mutational and cysteine scanning analysis of the glucagon receptor N-terminal domain. J Biol Chem 285: 3095130598.
  • Raufman J-P, Singh L, Eng J (1991). Exendin-3, a novel peptide from Heloderma horridum venom, interacts with vasoactive intestinal peptide receptors and a newly described receptor on dispersed acini from guinea pig pancreas. J Biol Chem 266: 28972902.
  • Raufman J-P, Singh L, Singh G, Eng J (1992). Truncated glucagon-like peptide-1 interacts with exendin receptors on dispersed acini from guinea pig pancreas. J Biol Chem 267: 2143221437.
  • Runge A, Schimmer S, Oschmann J, Schiødt CB, Knudsen SM, Jeppesen CB et al. (2007). Differential structural properties of GLP-1 and exendin-4 determine their relative affinity for the GLP-1 receptor N-terminal extracellular domain. Biochemistry 46: 58305840.
  • Runge S, Gram C, Bräuner-Osborne H, Madsen K, Knudsen LB, Wulff BS (2003a). Three distinct epitopes on the extracellular face of the glucagon receptor determine specificity for the glucagon amino terminus. J Biol Chem 278: 2800528010.
  • Runge S, Wulff BS, Madsen K, Bräuner-Osborne H, Knudsen LB (2003b). Different domains of the glucagon and glucagon-like peptide-1 receptors provide the critical determinants of ligand selectivity. Br J Pharmacol 138: 787794.
  • Runge S, Thøgersen H, Madsen K, Lau J, Rudolph R (2008). Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain. J Biol Chem 283: 1134011347.
  • Salapatek A-MF, MacDonald PE, Gaisano HY, Wheeler MB (1999). Mutations to the Third Cytoplasmic Domain of the Glucagon-Like Peptide 1 (GLP-1) Receptor Can Functionally Uncouple GLP-1-Stimulated Insulin Secretion in HIT-T15 Cells. Mol Endocrinol 13: 13051317.
  • Schepp W, Schmidtler J, Riedel T, Dehne K, Schusdziarra V, Holst JJ et al. (1994). Exendin-4 and exendin-(9-39)-amide: agonist and antagonist, respectively at the rat parietal cell receptor for glucagon-like peptide-1-(7-36)-amide. Eur J Pharmacol 269: 183191.
  • Schröder-Tittmann K, Bosse-Doenecke E, Reedtz-Runge S, Ihling C, Sinz A, Tittmann K et al. (2010). Recombinant expression, in vitro refolding, and biophysical characterization of the human glucagon-like peptide-1 receptor. Biochemistry 49: 79567965.
  • Segre GV, Goldring SR (1993). Receptors for secretin, calcitonin, parathyroid hormone (PTH)/PTH-related peptide, vasoactive intestinal peptide, glucagonlike peptide 1, growth hormone-releasing hormone, and glucagon belong to a newly discovered G-protein-linked receptor family. Trends Endocrinol Metab 4: 309314.
  • Serre V, Dolci W, Schaerer E, Scrocchi L, Drucker D, Efrat S et al. (1998). Exendin-(9-39) is an inverse agonist of the murine glucagon-like peptide-1 receptor: implications for basal intracellular cyclic adenosine 3′, 5′- monophosphate levels and β-cell glucose competence. Endocrinology 139: 44484454.
  • Siegel EG, Gallwitz B, Scharf G, Mentlein R, Morys-Wortmann C, Fölsch UR et al. (1999). Biological activity of GLP-1-analogues with N-terminal modifications. Regul Pept 79: 93102.
  • Sloop KW, Willard FS, Brenner MB, Ficorilli J, Valasek K, Showalter AD et al. (2010). Novel small molecule glucagon-like peptide-1 agonist stimulates insulin secretion in rodents and from human islets. Diabetes 59: 30993107.
  • Su H, He M, Li H, Liu Q, Wang J, Wang Y et al. (2008). Boc5, a non-peptidic glucagon-like peptide-1 receptor agonist, invokes sustained glycemic control and weight loss in diabetic mice. PLoS ONE 3: 111.
  • Suzuki S, Kawai K, Ohashi S, Mukai H, Yamashita K (1989). Comparison of the effects of various C-terminal and N-terminal fragment peptides of glucagon-like peptide-1 on insulin and glucagon release from the isolated perfused rat pancreas. Endocrinology 125: 31093114.
  • Syme CA, Zhang L, Bisello A (2006). Caveolin-1 regulates cellular trafficking and function in the glucagon-like peptide 1 receptor. Mol Endocrinol 20: 34003411.
  • Takhar A, Gyomorey S, Su R-C, Mathi SK, Li X, Wheeler MB (1995). The third cytoplasmic domain of the GLP-1[7-36 amide] receptor is required for coupling to the adenylyl cyclase system. Endocrinology 137: 21752178.
  • Tams JW, Knudsen SM, Fahrenkrug J (1998). Proposed arrangement of the seven transmembrane helices in the secretin receptor family. Receptors Channels 5: 7990.
  • Teng M, Johnson MD, Thomas C, Kiel D, Lakis JN, Kercher T et al. (2007). Small molecule ago-allosteric modulators of the human glucagon-like peptide-1 (hGLP-1) receptor. Bioorg Med Chem Lett 17: 54725478.
  • Thorens B (1992). Expression cloning of the pancreatic β cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci U S A 89: 86418645.
  • Thorens B, Porett A, Bühler L, Deng SP, Morel P, Widmann C (1993). Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor. Diabetes 42: 16781682.
  • Thornton K, Gorenstein DG (1994). Structure of glucagon-like peptide (7-36) amide in a dodecylphosphocholine micelle as determined by 2D NMR. Biochemistry 33: 35323539.
  • Tibaduiza EC, Chen C, Beinborn M (2001). A small molecule ligand of the glucagon-like peptide 1 receptor targets its amino-terminal hormone binding domain. J Biol Chem 276: 3778737793.
  • Turton MD, O'Shea D, Gunn I, Beak SA, Edwards CMB, Meeran K et al. (1996). A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379: 6972.
  • Underwood CR, Garibay P, Knudsen LB, Hastrup S, Peters GH, Rudolph R et al. (2010). Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. J Biol Chem 285: 723730.
  • Vahl TP, Paty BW, Fuller BD, Prigeon RL, D'Alessio DA (2003). Effects of GLP-1-(7-36) amide, GLP-1-(7-37), and GLP-1-(9-36) amide on intravenous glucose tolerance and glucose-induced insulin secretion in healthy humans. J Clin Endocrinol Metab 88: 17721779.
  • Wang S, Yu J, Li W, Li F (2010). Structural study of an active analog of EX-4 in solution and micelle associated states. Biopolymers (Peptide Science) 96: 348357.
  • Watanabe Y, Kawai K, Oshashi S, Yokota C, Suzuki S, Yamashita K (1994). Structure-activity relationships of glucagon-like peptide-1 (7-36) amide: insulinotropic activities in perfused rat pancreases, and receptor binding and cyclic AMP production in RINm5F cells. J Endocrinol 140: 4552.
  • Weir GC, Mojsov S, Hendrick GK, Habener JF (1989). Glucagon-like peptide I (7-37) actions on endocrine pancreas. Diabetes 38: 338342.
  • Wettergren A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ (1993). Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 38: 665673.
  • Widmann C, Dolci W, Thorens B (1995). Agonist-induced internalization and recycling of the glucagon-like peptide-1 receptor in transfected fibroblasts and in insulinomas. Biochem J 310: 203214.
  • Widmann C, Dolci W, Thorens B (1996a). Desensitization and phosphorylation of the glucagon-like peptide-1 (GLP-1) receptor by GLP-1 and 4-Phorbol 12-Myristate 13-Acetate. Mol Endocrinol 10: 6275.
  • Widmann C, Dolci W, Thorens B (1996b). Heterologous desensitization of the glucagon-like peptide-1 receptor by phorbol esters requires phosphorylation of the cytoplasmic tail at four different sites. J Biol Chem 271: 1995719963.
  • Wilmen A, Göke B, Göke R (1996). The isolated N-terminal extracellular domain of the glucagon-like peptide-1 (GLP)-1 receptor has intrinsic binding activity. FEBS Lett 398: 4347.
  • Wootten D, Simms J, Koole C, Woodman OL, Summers RJ, Christopoulos A et al. (2011). Modulation of the glucagon-like peptide-1 receptor signaling by naturally occurring and synthetic flavonoids. J Pharmacol Exp Ther 336: 540550.
  • Xiao Q, Jeng W, Wheeler MB (2000). Characterization of glucagon-like peptide-1 receptor binding determinants. J Mol Endocrinol 25: 321335.
  • Xiao Q, Giguere J, Parisen M, Jeng WS, Pierre PL, Brubaker PL et al. (2001). Biological activities of glucagon-like peptide-1 analogues in vitro and in vivo. Biochemistry 40: 28602869.