SEARCH

SEARCH BY CITATION

References

  • Bailey RJ, Hay DL (2007). Agonist-dependent consequences of proline to alanine substitution in the transmembrane helices of the calcitonin receptor. Br J Pharmacol 151: 678687.
  • Barwell J, Conner A, Poyner DR (2011). Extracellular loops 1 and 3 and their associated transmembrane regions of the calcitonin receptor-like receptor are needed for CGRP receptor function. Biochim Biophys Acta 1813: 19061916.
  • Christopoulos A, Christopoulos G, Morfis M, Udawela M, Laburthe M, Couvineau A et al. (2003). Novel receptor partners and function of receptor activity-modifying proteins. J Biol Chem 278: 32933297.
  • Chugunov AO, Simms J, Poyner DR, Dehouck Y, Rooman M, Gilis D et al. (2010). Evidence that interaction between conserved residues in transmembrane helices 2, 3, and 7 are crucial for human VPAC1 receptor activation. Mol Pharmacol 78: 394401.
  • Claus M, Jaeschke H, Kleinau G, Neumann S, Krause G, Paschke R (2005). A hydrophobic cluster in the center of the third extracellular loop is important for thyrotropin receptor signaling. Endocrinology 146: 51975203.
  • Conner AC, Simms J, Barwell J, Wheatley M, Poyner DR (2007a). Ligand binding and activation of the CGRP receptor. Biochem Soc Trans 35 (Pt 4): 729732.
  • Conner M, Hawtin SR, Simms J, Wootten D, Lawson Z, Conner AC et al. (2007b). Systematic analysis of the entire second extracellular loop of the V(1a) vasopressin receptor: key residues, conserved throughout a G-protein-coupled receptor family, identified. J Biol Chem 282: 1740517412.
  • Flahaut M, Rossier BC, Firsov D (2002). Respective roles of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMP) in cell surface expression of CRLR/RAMP heterodimeric receptors. J Biol Chem 277: 1473114737.
  • Gibbons C, Dackor R, Dunworth W, Fritz-Six K, Caron KM (2007). Receptor activity-modifying proteins: RAMPing up adrenomedullin signaling. Mol Endocrinol 21: 783796.
  • Hawtin SR, Simms J, Conner M, Lawson Z, Parslow RA, Trim J et al. (2006). Charged extracellular residues, conserved throughout a G-protein-coupled receptor family, are required for ligand binding, receptor activation, and cell-surface expression. J Biol Chem 281: 3847838488.
  • Hay DL, Howitt SG, Conner AC, Schindler M, Smith DM, Poyner DR (2003). CL/RAMP2 and CL/RAMP3 produce pharmacologically distinct adrenomedullin receptors: a comparison of effects of adrenomedullin22-52, CGRP8-37 and BIBN4096BS. Br J Pharmacol 140: 477486.
  • Hay DL, Poyner DR, Sexton PM (2006). GPCR modulation by RAMPs. Pharmacol Ther 109: 173197.
  • Ittner LM, Luessi F, Koller D, Born W, Fischer JA, Muff R (2004). Aspartate(69) of the calcitonin-like receptor is required for its functional expression together with receptor-activity-modifying proteins 1 and -2. Biochem Biophys Res Commun 319: 12031209.
  • Kitamura K, Ichiki Y, Tanaka M, Kawamoto M, Emura J, Sakakibara S et al. (1994). Immunoreactive adrenomedullin in human plasma. FEBS Lett 341: 288290.
  • Klco JM, Nikiforovich GV, Baranski TJ (2006). Genetic analysis of the first and third extracellular loops of the C5a receptor reveals an essential WXFG motif in the first loop. J Biol Chem 281: 1201012019.
  • Kleinau G, Jaeschke H, Mueller S, Raaka BM, Neumann S, Paschke R et al. (2008). Evidence for cooperative signal triggering at the extracellular loops of the TSH receptor. FASEB J 22: 27982808.
  • Koller D, Born W, Leuthauser K, Fluhmann B, McKinney RA, Fischer JA et al. (2002). The extreme N-terminus of the calcitonin-like receptor contributes to the selective interaction with adrenomedullin or calcitonin gene-related peptide. FEBS Lett 531: 464468.
  • Koller D, Ittner LM, Muff R, Husmann K, Fischer JA, Born W (2004). Selective inactivation of adrenomedullin over calcitonin gene-related peptide receptor function by the deletion of amino acids 14-20 of the mouse calcitonin-like receptor. J Biol Chem 279: 2038720391.
  • Kuwasako K, Shimekake Y, Masuda M, Nakahara K, Yoshida T, Kitaura M et al. (2000). Visualization of the calcitonin receptor-like receptor and its receptor activity-modifying proteins during internalization and recycling. J Biol Chem 275: 2960229609.
  • Kuwasako K, Kitamura K, Uemura T, Nagoshi Y, Kato J, Eto T (2003). The function of extracellular cysteines in the human adrenomedullin receptor. Hypertens Res 26 (Suppl): S25S31.
  • Kuwasako K, Cao YN, Nagoshi Y, Kitamura K, Eto T (2004a). Adrenomedullin receptors: pharmacological features and possible pathophysiological roles. Peptides 25: 20032012.
  • Kuwasako K, Cao YN, Nagoshi Y, Tsuruda T, Kitamura K, Eto T (2004b). Characterization of the human calcitonin gene-related peptide receptor subtypes associated with receptor activity-modifying proteins. Mol Pharmacol 65: 207213.
  • Kuwasako K, Cao YN, Chu CP, Iwatsubo S, Eto T, Kitamura K (2006). Functions of the cytoplasmic tails of the human receptor activity-modifying protein components of calcitonin gene-related peptide and adrenomedullin receptors. J Biol Chem 281: 72057213.
  • Kuwasako K, Kitamura K, Nagata S, Kato J (2008). Functions of the extracellular histidine residues of receptor activity-modifying proteins vary within adrenomedullin receptors. Biochem Biophys Res Commun 377: 109113.
  • Kuwasako K, Kitamura K, Nagata S, Kato J (2009). Flow cytometric analysis of the calcitonin receptor-like receptor domains responsible for cell-surface translocation of receptor activity-modifying proteins. Biochem Biophys Res Commun 384: 249254.
  • Kuwasako K, Kitamura K, Nagata S, Hikosaka T, Kato J (2010). Function of the cytoplasmic tail of human calcitonin receptor-like receptor in complex with receptor activity-modifying protein 2. Biochem Biophys Res Commun 392: 380385.
  • Kuwasako K, Kitamura K, Nagata S, Hikosaka T, Kato J (2011a). Structure-function analysis of helix 8 of human calcitonin receptor-like receptor within the adrenomedullin 1 receptor. Peptides 32: 144149.
  • Kuwasako K, Kitamura K, Nagata S, Hikosaka T, Takei Y, Kato J (2011b). Shared and separate functions of the RAMP-based adrenomedullin receptors. Peptides 32: 15401550.
  • Lawson Z, Wheatley M (2004). The third extracellular loop of G-protein-coupled receptors: more than just a linker between two important transmembrane helices. Biochem Soc Trans 32 (Pt 6): 10481050.
  • McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N et al. (1998). RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393: 333339.
  • Muff R, Born W, Fischer JA (2003). Adrenomedullin selectivity of calcitonin-like receptor/receptor activity modifying proteins. Hypertens Res 26 (Suppl): S3S8.
  • Nielsen SM, Nielsen LZ, Hjorth SA, Perrin MH, Vale WW (2000). Constitutive activation of tethered-peptide/corticotropin-releasing factor receptor chimeras. Proc Natl Acad Sci U S A 97: 1027710281.
  • Peeters MC, van Westen GJ, Li Q, Ijzerman AP (2011). Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation. Trends Pharmacol Sci 32: 3542.
  • Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W et al. (2002). International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 54: 233246.
  • Qi T, Hay DL (2010). Structure–function relationships of the N-terminus of receptor activity-modifying proteins. Br J Pharmacol 159: 10591068.
  • Runge S, Wulff BS, Madsen K, Brauner-Osborne H, Knudsen LB (2003). Different domains of the glucagon and glucagon-like peptide-1 receptors provide the critical determinants of ligand selectivity. Br J Pharmacol 138: 787794.
  • Salvatore CA, Mallee JJ, Bell IM, Zartman CB, Williams TM, Koblan KS et al. (2006). Identification and pharmacological characterization of domains involved in binding of CGRP receptor antagonists to the calcitonin-like receptor. Biochemistry 45: 18811887.
  • Sexton PM, Poyner DR, Simms J, Christopoulos A, Hay DL (2009). Modulating receptor function through RAMPs: can they represent drug targets in themselves? Drug Discov Today 14: 413419.
  • Simpson LM, Wall ID, Blaney FE, Reynolds CA (2011). Modeling GPCR active state conformations: the beta(2)-adrenergic receptor. Proteins 79: 14411457.
  • Siu FY, Stevens RC (2010). RAMP-ing up class-B GPCR ECD structural coverage. Structure 18: 10671068.
  • Standfuss J, Edwards PC, D'Antona A, Fransen M, Xie G, Oprian DD et al. (2011). The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471: 656660.
  • Topiol S, Sabio M (2009). X-ray structure breakthroughs in the GPCR transmembrane region. Biochem Pharmacol 78: 1120.
  • Unson CG, Wu CR, Jiang Y, Yoo B, Cheung C, Sakmar TP et al. (2002). Roles of specific extracellular domains of the glucagon receptor in ligand binding and signaling. Biochemistry 41: 1179511803.
  • Van Rampelbergh J, Juarranz MG, Perret J, Bondue A, Solano RM, Delporte C et al. (2000). Characterization of a novel VPAC(1) selective agonist and identification of the receptor domains implicated in the carboxyl-terminal peptide recognition. Br J Pharmacol 130: 819826.
  • Walker CS, Conner AC, Poyner DR, Hay DL (2010). Regulation of signal transduction by calcitonin gene-related peptide receptors. Trends Pharmacol Sci 31: 476483.
  • Wess J, Han SJ, Kim SK, Jacobson KA, Li JH (2008). Conformational changes involved in G-protein-coupled-receptor activation. Trends Pharmacol Sci 29: 616625.
  • Wheatley M, Wootten D, Conner MT, Simms J, Kendrick R, Logan RT et al. (2012). Lifting the lid on G-protein-coupled receptors: the role of extracellular loops. Br J Pharmacol 165: 16881703.
  • Zhao MM, Gaivin RJ, Perez DM (1998). The third extracellular loop of the beta2-adrenergic receptor can modulate receptor/G protein affinity. Mol Pharmacol 53: 524529.