SEARCH

SEARCH BY CITATION

Keywords:

  • calcitonin gene-related peptide;
  • calcitonin receptor-like receptor;
  • receptor activity-modifying protein;
  • endothelin-converting enzyme-1;
  • endosome;
  • mesenteric;
  • migraine;
  • smooth muscle cell;
  • vasodilation

Background and Purpose

Calcitonin gene-related peptide (CGRP) is a potent vasodilator, implicated in the pathogenesis of migraine. CGRP activates a receptor complex comprising, calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). In vitro studies indicate recycling of CLR●RAMP1 is regulated by degradation of CGRP in early endosomes by endothelin-converting enzyme-1 (ECE-1). However, it is not known if ECE-1 regulates the resensitization of CGRP-induced responses in functional arterial tissue.

Experimental Approach

CLR, ECE-1a-d and RAMP1 expression in rat mesenteric artery smooth muscle cells (RMA-SMCs) and mesenteric arteries was analysed by RT-PCR and by immunofluorescence and confocal microscopy. CGRP-induced signalling in cells was examined by measuring cAMP production and ERK activation. CGRP-induced relaxation of arteries was measured by isometric wire myography. ECE-1 was inhibited using the specific inhibitor, SM-19712.

Key Results

RMA-SMCs and arteries contained mRNA for CLR, ECE-1a-d and RAMP1. ECE-1 was present in early endosomes of RMA-SMCs and in the smooth muscle layer of arteries. CGRP induced endothelium-independent relaxation of arteries. ECE-1 inhibition had no effect on initial CGRP-induced responses but reduced cAMP generation in RMA-SMCs and vasodilation in mesenteric arteries responses to subsequent CGRP challenges.

Conclusions And Implications

ECE-1 regulated the resensitization of responses to CGRP in RMA-SMCs and mesenteric arteries. CGRP-induced relaxation did not involve endothelium-derived pathways. This is the first report of ECE-1 regulating CGRP responses in SMCs and arteries. ECE-1 inhibitors may attenuate an important vasodilatory pathway, implicated in primary headaches and may represent a new therapeutic approach for the treatment of migraine.