SEARCH

SEARCH BY CITATION

References

  • Alexander SP, Mathie A, Peters JA (2011). Guide to receptors and channels (GRAC), 5th edition. Br J Pharmacol 164 (Suppl. 1): S1S324.
  • Al-Hazza A, Linley JE, Aziz Q, Maclennan KA, Hunter M, Sandle GI (2012). Potential role of reduced basolateral potassium (IKCa3.1) channel expression in the pathogenesis of diarrhoea in ulcerative colitis. J Pathol 226: 463470.
  • Alvarez J, Montero M, Garcia-Sancho J (1992). High affinity inhibition of Ca(2+)-dependent K+ channels by cytochrome P-450 inhibitors. J Biol Chem 267: 1178911793.
  • Ataga KI, Reid M, Ballas SK, Yasin Z, Bigelow C, James LS et al. (2011). Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the Gardos channel blocker senicapoc (ICA-17043). Br J Haematol 153: 92104.
  • Beeton C, Wulff H, Barbaria J, Clot-Faybesse O, Pennington M, Bernard D et al. (2001). Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci U S A 98: 1394213947.
  • Ben-Horin S, Chowers Y (2011). Review article: loss of response to anti-TNF treatments in Crohn's disease. Aliment Pharmacol Ther 33: 987995.
  • Bouguen G, Chevaux JB, Peyrin-Biroulet L (2011). Recent advances in cytokines: therapeutic implications for inflammatory bowel diseases. World J Gastroenterol 17: 547556.
  • Brugnara C, Gee B, Armsby CC, Kurth S, Sakamoto M, Rifai N et al. (1996). Therapy with oral clotrimazole induces inhibition of the Gardos channel and reduction of erythrocyte dehydration in patients with sickle cell disease. J Clin Invest 97: 12271234.
  • Caprioli F, Caruso R, Sarra M, Pallone F, Monteleone G (2012). Disruption of inflammatory signals by cytokine-targeted therapies for inflammatory bowel diseases. Br J Pharmacol 165: 820828.
  • Chen YJ, Raman G, Bodendiek S, O'Donnell ME, Wulff H (2011). The KCa3.1 blocker TRAM-34 reduces infarction and neurological deficit in a rat model of ischemia/reperfusion stroke. J Cereb Blood Flow Metab 12: 23632374.
  • Di L, Srivastava S, Zhdanova O, Ding Y, Li Z, Wulff H et al. (2010). Inhibition of the K+ channel KCa3.1 ameliorates T cell-mediated colitis. Proc Natl Acad Sci U S A 107: 15411546.
  • Gao YD, Hanley PJ, Rinne S, Zuzarte M, Daut J (2010). Calcium-activated K(+) channel (K(Ca)3.1) activity during Ca(2+) store depletion and store-operated Ca(2+) entry in human macrophages. Cell Calcium 48: 1927.
  • Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA et al. (2000). Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem 275: 3713737149.
  • Jenkins DP, Strobaek D, Hougaard C, Jensen ML, Hummel R, Sorensen US et al. (2011). Negative gating modulation by (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphthylamine (NS8593) depends on residues in the inner pore vestibule: pharmacological evidence of deep-pore gating of K(Ca)2 channels. Mol Pharmacol 79: 899909.
  • Macey RI, Adorante JS, Orme FW (1978). Erythrocyte membrane potentials determined by hydrogen ion distribution. Biochim Biophys Acta 512: 284295.
  • Mauler F, Hinz V, Horvath E, Schuhmacher J, Hofmann HA et al. (2004). Selective intermediate-/small-conductance calcium-activated potassium channel (KCNN4) blockers are potent and effective therapeutics in experimental brain oedema and traumatic brain injury caused by acute subdural haematoma. Eur J Neurosci 20: 17611768.
  • McGrath J, Drummond G, Kilkenny C, Wainwright C (2010). Guidelines for reportingexperiments involving animals: the ARRIVE guidelines. Br J Pharmacol 160: 15731576.
  • Nielsen OH, Munck LK (2007). Drug insight: aminosalicylates for the treatment of IBD. Nat Clin Pract Gastroenterol Hepatol 4: 160170.
  • Reich EP, Cui L, Yang L, Pugliese-Sivo C, Golovko A, Petro M et al. (2005). Blocking ion channel KCNN4 alleviates the symptoms of experimental autoimmune encephalomyelitis in mice. Eur J Immunol 35: 10271036.
  • Rufo PA, Merlin D, Riegler M, Ferguson-Maltzman MH, Dickinson BL, Brugnara C et al. (1997). The antifungal antibiotic, clotrimazole, inhibits chloride secretion by human intestinal T84 cells via blockade of distinct basolateral K+ conductances. Demonstration of efficacy in intact rabbit colon and in an in vivo mouse model of cholera. J Clin Invest 100: 31113120.
  • Sankaranarayanan A, Raman G, Busch C, Schultz T, Zimin PI, Hoyer J et al. (2009). Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol Pharmacol 75: 281295.
  • Shumilina E, Lam RS, Wolbing F, Matzner N, Zemtsova IM, Sobiesiak M et al. (2008). Blunted IgE-mediated activation of mast cells in mice lacking the Ca2+-activated K+ channel KCa3.1. J Immunol 180: 80408047.
  • Si H, Heyken WT, Wolfle SE, Tysiac M, Schubert R, Grgic I et al. (2006). Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel. Circ Res 99: 537544.
  • Stocker JW, De Franceschi L, McNaughton-Smith GA, Corrocher R, Beuzard Y, Brugnara C (2003). ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood 101: 24122418.
  • Strobaek D, Hougaard C, Johansen TH, Sorensen US, Nielsen EO, Nielsen KS et al. (2006). Inhibitory gating modulation of small conductance Ca2+-activated K+ channels by the synthetic compound (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphtylamine (NS8593) reduces afterhyperpolarizing current in hippocampal CA1 neurons. Mol Pharmacol 70: 17711782.
  • Thapa D, Lee JS, Park SY, Bae YH, Bae SK, Kwon JB et al. (2008). Clotrimazole ameliorates intestinal inflammation and abnormal angiogenesis by inhibiting interleukin-8 expression through a nuclear factor-kappaB-dependent manner. J Pharmacol Exp Ther 327: 353364.
  • Toyama K, Wulff H, Chandy KG, Azam P, Raman G, Saito T et al. (2008). The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest 118: 30253037.
  • Urbahns K, Horvath E, Stasch JP, Mauler F (2003). 4-Phenyl-4H-pyrans as IK(Ca) channel blockers. Bioorg Med Chem Lett 13: 26372639.
  • Urbahns K, Goldmann S, Kruger J, Horvath E, Schuhmacher J, Grosser R et al. (2005). IKCa-channel blockers. Part 2: discovery of cyclohexadienes. Bioorg Med Chem Lett 15: 401404.
  • Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG (2000). Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci U S A 97: 81518156.
  • Wulff H, Gutman GA, Cahalan MD, Chandy KG (2001). Delineation of the clotrimazole/TRAM-34 binding site on the intermediate conductance calcium-activated potassium channel, IKCa1. J Biol Chem 276: 3204032045.
  • Wulff H, Knaus HG, Pennington M, Chandy KG (2004). K+ channel expression during B cell differentiation: implications for immunomodulation and autoimmunity. J Immunol 173: 776786.
  • Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V (2007). Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem 14: 14371457.
  • Wulff H, Castle NA, Pardo LA (2009). Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8: 9821001.
  • Yang B, Gribkoff VK, Pan J, Damagnez V, Dworetzky SI, Boissard CG et al. (2006). Pharmacological activation and inhibition of Slack (Slo2.2) channels. Neuropharmacology 51: 896906.