SEARCH

SEARCH BY CITATION

References

  • Breyer RM, Bagdassarian CK, Myers SA, Breyer MD (2001). Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 41: 661690.
  • Buchanan FG, Gorden DL, Matta P, Shi Q, Matrisian LM, DuBois RN (2006). Role of beta-arrestin 1 in the metastatic progression of colorectal cancer. Proc Natl Acad Sci U S A 103: 14921497.
  • Caristi S, Piraino G, Cucinotta M, Valenti A, Loddo S, Teti D (2005). Prostaglandin E2 induces interleukin-8 gene transcription by activating C/EBP homologous protein in human T lymphocytes. J Biol Chem 280: 1443314442.
  • Dey I, Chadee K (2008). Prostaglandin E2 produced by Entamoeba histolytica binds to EP4 receptors and stimulates interleukin-8 production in human colonic cells. Infect Immun 76: 51585163.
  • Dey I, Giembycz MA, Chadee K (2009). Prostaglandin E(2) couples through EP(4) prostanoid receptors to induce IL-8 production in human colonic epithelial cell lines. Br J Pharmacol 156: 475485.
  • Fennekohl A, Sugimoto Y, Segi E, Maruyama T, Ichikawa A, Püschel GP (2002). Contribution of the two Gs-coupled PGE2-receptors EP2-receptor and EP4-receptor to the inhibition by PGE2 of the LPS-induced TNFα-formation in Kupffer cells from EP2- or EP4-receptor-deficient mice. Pivotal role for the EP4-receptor in wild type Kupffer cells. J Hepatol 36: 328334.
  • Fujino H, Xu W, Regan JW (2003). Prostaglandin E2 induced functional expression of early growth response factor-1 by EP4, but not EP2, prostanoid receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated kinases. J Biol Chem 278: 1215112156.
  • Gibson PG, Simpson JL, Saltos N (2001). Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 119: 13291336.
  • Hall DA, Beresford IJ, Browning C, Giles H (1999). Signalling by CXC-chemokine receptors 1 and 2 expressed in CHO cells: a comparison of calcium mobilization, inhibition of adenylyl cyclase and stimulation of GTPgammaS binding induced by IL-8 and GROalpha. Br J Pharmacol 126: 810818.
  • Harada A, Sekido N, Akahoshi T, Wada T, Mukaida N, Matsushima K (1994). Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol 56: 559564.
  • Hippenstiel S, Soeth S, Kellas B, Fuhrmann O, Seybold J, Krüll M et al. (2000). Rho proteins and the p38-MAPK pathway are important mediators for LPS-induced interleukin-8 expression in human endothelial cells. Blood 95: 30443051.
  • Hoffmann E, Dittrich-Breiholz O, Holtmann H, Kracht M (2002). Multiple control of interleukin-8 gene expression. J Leukoc Biol 72: 847855.
  • Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU et al. (2004). IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther 6: 120128.
  • Ji R, Chou CL, Xu W, Chen XB, Woodward DF, Regan JW (2010). EP1 prostanoid receptor coupling to G i/o up-regulates the expression of hypoxia-inducible factor-1 alpha through activation of a phosphoinositide-3 kinase signaling pathway. Mol Pharmacol 77: 10251036.
  • Joshi PC, Zhou X, Cuchens M, Jones Q (2001). Prostaglandin E2 suppressed IL-15-mediated human NK cell function through down-regulation of common gamma-chain. J Immunol 166: 885889.
  • Katoh H, Watabe A, Sugimoto Y, Ichikawa A, Negishi M (1995). Characterization of the signal transduction of prostaglandin E receptor EP1 subtype in cDNA-transfected Chinese hamster ovary cells. Biochim Biophys Acta 1244: 4148.
  • Kobashi C, Asamizu S, Ishiki M, Iwata M, Usui I, Yamazaki K et al. (2009). Inhibitory effect of IL-8 on insulin action in human adipocytes via MAP kinase pathway. J Inflamm 6: 25.
  • Lee HS, Moon C, Lee HW, Park EM, Cho MS, Kang JL (2007). Src tyrosine kinases mediate activations of NF-kappaB and integrin signal during lipopolysaccharide-induced acute lung injury. J Immunol 179: 70017011.
  • Liu AM, Wong YH (2004). G16-mediated activation of nuclear factor kappaB by the adenosine A1 receptor involves c-Src, protein kinase C, and ERK signaling. J Biol Chem 279: 5319653204.
  • Liu AM, Wong YH (2005). Activation of nuclear factor kappa B by somatostatin type 2 receptor in pancreatic acinar AR42J cells involves G alpha14 and multiple signaling components: a mechanism requiring protein kinase C, calmodulin-dependent kinase II, ERK, and c-Src. J Biol Chem 280: 3461734625.
  • Neuschäfer-Rube F, Hermosilla R, Rehwald M, Rönnstrand L, Schülein R, Wernstedt C et al. (2004). Identification of a Ser/Thr cluster in the C-terminal domain of the human prostaglandin receptor EP4 that is essential for agonist-induced beta-arrestin1 recruitment but differs from the apparent principal phosphorylation site. Biochem J 379: 573585.
  • Nourbakhsh M, Kalble S, Dorrie A, Hauser H, Resch K, Kracht M (2001). The NF-kappa b repressing factor is involved in basal repression and interleukin (IL)-1-induced activation of IL-8 transcription by binding to a conserved NF-kappa b-flanking sequence element. J Biol Chem 276: 45014508.
  • van der Pouw Kraan TC, Boeije LC, Smeenk RJ, Wijdenes J, Aarden LA (1995). Prostaglandin-E2 is a potent inhibitor of human interleukin 12 production. J Exp Med 181: 775779.
  • Rajakariar R, Yaqoob MM, Gilroy DW (2006). COX-2 in inflammation and resolution. Mol Interv 6: 199207.
  • Rodgers HC, Pang L, Holland E, Corbett L, Range S, Knox AJ (2002). Bradykinin increases IL-8 generation in airway epithelial cells via COX-2-derived prostanoids. Am J Physiol Lung Cell Mol Physiol 283: L612L618.
  • Roebuck KA (1999). Regulation of interleukin-8 gene expression. J Interferon Cytokine Res 19: 429438.
  • Suzawa T, Miyaura C, Inada M, Maruyama T, Sugimoto Y, Ushikubi F et al. (2000). The role of prostaglandin E receptor subtypes (EP1, EP2, EP3, and EP4) in bone resorption: an analysis using specific agonists for the respective EPs. Endocrinology 141: 15541559.
  • Takayama K, García-Cardena G, Sukhova GK, Comander J, Gimbrone MA Jr et al. (2002). Prostaglandin E2 suppresses chemokine production in human macrophages through the EP4 receptor. J Biol Chem 277: 4414744154.
  • Takehara H, Iwamoto J, Mizokami Y, Takahashi K, Ootubo T, Miura S et al. (2005). Involvement of cyclooxygenase-2 – prostaglandin E2 pathway in interleukin-8 production in gastric cancer cells. Dig Dis Sci 51: 21882197.
  • Tang CH, Yang RS, Fu WM (2005). Prostaglandin E2 stimulates fibronectin expression through EP1 receptor, phospholipase C, protein kinase Calpha, and c-Src pathway in primary cultured rat osteoblasts. J Biol Chem 280: 2290722916.
  • Uguccioni M, Gionchetti P, Robbiani DF, Rizzello F, Peruzzo S, Campieri M et al. (1999). Increased expression of IP-10, IL-8, MCP-1, and MCP-3 in ulcerative colitis. Am J Pathol 155: 331336.
  • Vij N, Amoako MO, Mazur S, Zeitlin PL (2008). CHOP transcription factor mediates IL-8 signaling in cystic fibrosis bronchial epithelial cells. Am J Respir Cell Mol Biol 38: 176184.
  • Vlahos R, Stewart AG (1999). Interleukin-1alpha and tumour necrosis factor-alpha modulate airway smooth muscle DNA synthesis by induction of cyclo-oxygenase-2: inhibition by dexamethasone and fluticasone propionate. Br J Pharmacol 126: 13151324.
  • Wall EA, Zavzavadjian JR, Chang MS, Randhawa B, Zhu X, Hsueh RC et al. (2009). Suppression of LPS-induced TNF-alpha production in macrophages by cAMP is mediated by PKA-AKAP95-p105. Sci Signal 16: 28.
  • Waugh DJ, Wilson C (2008). The interleukin-8 pathway in cancer. Clin Cancer Res 14: 67356741.
  • Xie P, Browning DD, Hay N, Mackman N, Ye RD (2000). Activation of NF-kappa B by bradykinin through a Galpha(q)- and Gbeta gamma-dependent pathway that involves phosphoinositide 3-kinase and Akt. J Biol Chem 275: 2490724914.
  • Yang YY, Hu CJ, Chang SM, Tai TY, Leu SJ (2004). Aspirin inhibits monocyte chemoattractant protein-1 and interleukin-8 expression in TNF-alpha stimulated human umbilical vein endothelial cells. Atherosclerosis 174: 207213.
  • Zhu YM, Bradbury DA, Pang L, Knox AJ (2003). Transcriptional regulation of interleukin (IL)-8 by bradykinin in human airway smooth muscle cells involves prostanoid-dependent activation of AP-1 and nuclear factor (NF)-IL-6 and prostanoid-independent activation of NF-kappaB. J Biol Chem 31: 2936629375.