SEARCH

SEARCH BY CITATION

References

  • 1
    Wake K. Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structure in and around the liver sinusoids, and vitamin A-storing cells in extrahepatic organs. Int Rev Cytol 1980; 66: 30353.
  • 2
    Phillips M J, Poucell S, Patterson J. An atlas and text of ultrastructural pathology. Liver 1987; 132.
  • 3
    Fox E S, Thomas P, Broitman S A. Comparative studies of endotoxin uptake by isolated rat Kupffer and peritoneal cells. Infect Immun 1987; 55: 29626.
  • 4
    Parker G A Picut C A. Liver immunobiology. Toxicol Pathol 2005; 33: 5262.
  • 5
    Van Furth R. Production and migration of monocytes and kinetics of macrophages. In: Van FurthR, ed. Mononuclear Phagocytes. Biology of Monocytes and Macrophages. Kluwer: Dordrecht, 1992, 312.
  • 6
    Naito M, Hasegawa G, Takahashi K. Development, differentiation, and maturation of Kupffer cells. Microsc Res Tech 1997; 39: 35064.
  • 7
    Taniguchi T, Toyoshima T, Fukao K, Nakuchi H. Presence of hematopoietic stem cells in the adult liver. Nat Med 1996; 2: 198203.
  • 8
    Watanabe H, Miyaji C, Seki S, Abo T. c-kit stem cells and thymocyte precursors in the livers off adult mice. J Exp Med 1996; 184: 68793.
  • 9
    Crosbie O M, Reynolds M, Mc Entee G, Traynor O, Hegarty J, O'Farrelly C. In vitro evidence for the presence of hematopoietic stem cells in the adult human liver. Hepatology 1999; 29: 11439.
  • 10
    Roojen N V, Kors N, Ende V D M, Dijkstra C D. Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue Res 1990; 260: 21522.
  • 11
    Yamamoto T, Naito M, Moriyama H, et al. Repopulation of murine Kupffer cells after intravenous administration of liposome- encapsulated dichlormethylene diphosphonate. Am J Pathol 1996; 149: 127186.
  • 12
    Paradis K, Blazar B, Sharp H L. Rapid repopulation and maturation of Kupffer cells from the bone marrow in a murine bone marrow transplant model. In: WisseE, KnookDL, eds. Cells of the Hepatic Sinusoid, Vol. 2. Rijswijk: Kupffer Cell Foundation, 1989, 4102.
  • 13
    Naito M, Takahashi K. The role of Kupffer cells in glucan induced granuloma formation in the liver of mice depleted of blood monocytes by administration of strontium-89. Lab Invest 1991; 64: 66474.
  • 14
    Steinhoff G, Behrend M, Sorg C, Wonigeit K, Pichlmayr R. Sequential analysis of macrophage tissue differentiation and Kupffer cell exchange after human liver transplantation. In: WisseE, KnookDL, eds. Cells of the Hepatic Sinusoid, Vol. 2. Rijswijk: Kupffer Cell Foundation, 1989, 4069.
  • 15
    Sleyster E C, Knook D L. Relation between localization and function of rat liver Kupffer cells. Lab Invest 1982; 47: 48490.
  • 16
    Hoedemakers R M, Morselt H W, Scherphof G L, Daemen T. Heterogeneity in secretory response of rat liver macrophages of different size. Liver 1995; 15: 3139.
  • 17
    Fabriek B O, Dijkstra C D, Van Den Berg T K. The macrophage scavenger receptor CD163. Immunobiology 2005; 210: 15360.
  • 18
    Van Rooijen N, Kors N, Vd Ende M, Dijkstra C D. Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichlormethylene diphosphonate. Cell Tissue Res 1990; 260: 21522.
  • 19
    Buechler C, Ritter M, Orso E, Langmann T, Klucken J, Schmitz G. Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and anti-inflammatory stimuli. J Leukoc Biol 2000; 67: 97103.
  • 20
    Sulahian T H, Hogger P, Wahner A E, et al. Human monocytes express CD163, which is upregulated by IL-10 and identical to p155. Cytokine 2000; 12: 131221.
  • 21
    Vomel T, Hager K, Platt D. Clearance of heterologous, homologous and damaged homologous erythrocytes by the isolated perfused rat liver. Vet Immunol Immunopathol 1988; 18: 3618.
  • 22
    Terpstra V, Van Berkel T J C. Scavenger receptors on liver Kupffer cells mediate the in vivo uptake of oxidatively damaged red blood cells in mice. Blood 2000; 95: 215763.
  • 23
    Willekens F L A, Roerdinkholer-Stoelwinder B, Groenen-Döpp Y A M, et al. Hemoglobin loss from erythrocytes in vivo results from spleen-facilitated vesiculation. Blood 2003; 101: 74751.
  • 24
    Willekens F L A, Were J M, Kruijt J K, et al. Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors. Blood 2005; 105: 21415.
  • 25
    Kristiansen M, Graversen J H, Jacobsen C, et al. Identification of the haemoglobin scavenger receptor. Nature 2001; 409: 198201.
  • 26
    Goda N, Suzuki K, Naito M, et al. Distribution of heme oxygenase isoforms in rat liver. J Clin Invest 1998; 101: 60412.
  • 27
    Hirano K - I, Kobayashi T, Watanabe T, et al. Role of heme oxygenase-1 and Kupffer cells in the production of bilirubin in the rat liver. Arch Histol Cytol 2001; 64: 11120.
  • 28
    Kappas A. A method for interdicting the development of severe jaundice in newborns by inhibiting the production of bilirubin. Pediatrics 2004; 113: 11923.
  • 29
    Ryter S W, Alam J, Choi A M K. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 2006; 86: 583650.
  • 30
    Stocker R, Yamamoto Y, McDonagh A, Glazer A, Ames B N. Bilirubin is an antioxidant of possible physiological importance. Science 1987; 235: 10435.
  • 31
    Suematsu M, Ishimura Y. The heme oxygenase–carbon monoxide system: a regulator of hepatobiliary functions. Hepatology 2000; 31: 36.
  • 32
    Bauer M, Bauer I. Heme oxygenase-1: redox regulation and role in the hepatic response to oxidative stress. Antioxid Redox Signal 2002; 4: 74958.
  • 33
    Wagener F A, Volk H D, Willis D, et al. Different faces of the heme–heme oxygenase system in inflammation. Pharmacol Rev 2003; 26: 55171.
  • 34
    Philippidis P, Mason J C, Evans B J, et al. Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: anti-inflammatory monocyte–macrophage response in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ Res 2004; 94: 11926.
  • 35
    Schieferdecker H L, Schlaf G, Jungermann K, Gotze O. Functions of anaphylatoxin C5a in rat liver: direct and indirect actions on nonparenchymal and parenchymal cells. Int Immunopharmacol 2001; 1: 46981.
  • 36
    Thornton B P, Vetvicka V, Pitman M, Goldman R C, Ross G D. Analysis of the sugar specificity and molecular location of the β-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J Immunol 1996; 156: 123546.
  • 37
    Decker K. Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem 1990; 192: 24561.
  • 38
    Su G L. Lipopylysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol 2002; 283: G25665.
  • 39
    Akerman P, Cote P, Yang S Q, et al. Antibodies to tumor necrosis factor inhibit liver regeneration after partial hepatectomy. Am J Physiol 1992; 263: G57985.
  • 40
    Jaeschke H, Farhood A, Smith C W. Contribution of complement-stimulated hepatic macrophages and neutrophils to endotoxin-induced liver injury in rats. Hepatology 1994; 19: 9739.
  • 41
    Ember J A, Hugli T E. Complement factors and their receptors. Immunopharmacology 1997; 38: 315.
  • 42
    Dieter P, Schulze-Specking A, Decker K. Ca2+ requirement of prostanoid but not of superoxide production by rat Kupffer cells. Eur J Biochem 1998; 177: 6167.
    Direct Link:
  • 43
    Jaeschke H, Farhood A. Neutrophil and Kupffer cell-induced oxidant stress and ischemia–reperfusion injury in rat liver in vivo. Am J Physiol Gastrointest Liver Physiol 1991; 260: G35562.
  • 44
    Bilzer M, Jaeschke H, Vollmar A M, Paumgartner G, Gerbes A L. Prevention of Kupffer cell-induced oxidant injury in rat liver by atrial natriuretic peptide. Am J Physiol 1999; 276: G113744.
  • 45
    Dieter P, Altin J G, Decker K, Bygrave F L. Possible involvement of eicosanoids in zymosan and arachidonic-acid-induced oxygen uptake, glycogenolysis and Ca2+mobilization in the perfused rat liver. Eur J Biochem 1987; 165: 45560.
  • 46
    Häussinger D, Stehle T, Gerok W. Effects of leukotrienes and the thromboxane A2 analogue U-46619 in isolated perfused rat liver. Metabolic, hemodynamic and ion-flux responses. Biol Chem Hoppe Seyler 1988; 369: 97107.
  • 47
    Kawada. N, Tran-Thi T A, Klein H, Decker K. The concentration of hepatic stellate (Ito) cell stimulated with vasoactive substances. Possible involvement of endothelin-1 and nitric oxide in the regulation of the sinusoidal tonus. Eur J Biochem 1993; 213: 81523.
  • 48
    Karck U, Peters T, Decker K. The release of tumor necrosis factor from endotoxin-stimulated rat Kupffer cells is regulated by prostaglandin E2 and dexamethasone. J Hepatol 1988; 7: 35261.
  • 49
    Peters T, Karck U, Decker K. Interdependence of tumor necrosis factor, prostaglandin E2, and protein synthesis in lipopolysaccharide-exposed rat Kupffer cells. Eur J Biochem 1990; 191: 58389.
  • 50
    Arai M, Peng X X, Currin R T, Thurman R G, Lemasters J J. Protection of sinusoidal endothelial cells against storage/reperfusion injury by prostaglandin E2 derived from Kupffer cells. Transplantation 1999; 68: 4405.
  • 51
    Schumann R R, Leong S R, Flaggs G W, et al. Structure and function of lipopolysaccharide binding protein. Science 1990; 249: 142931.
  • 52
    Schumann R R. Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the receptor for LPS/LBP complexes: a short review. Res Immunol 1992; 143: 115.
  • 53
    Takai N, Kataoka M, Higuchi Y, Matsuura K, Yamamoto S. Primary structure of rat CD14 and characteristics of rat CD14, cytokine, and NO synthase mRNA expression in mononuclear phagocyte system cells in response to LPS. J Leukoc Biol 1997; 61: 73644.
  • 54
    Matsuura K, Ishida T, Setoguchi M, Higuchi Y, Akizuki S, Yamamoto S. Upregulation of mouse CD14 expression in Kupffer cells by lipopolysaccharide. J Exp Med 1994; 179: 16716.
  • 55
    Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 1999; 189: 177782.
  • 56
    Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immun 2001; 2: 67580.
  • 57
    Klein A, Zhadkewich M, Margolick J, Winkelstein J, Bulkley G. Quantitative discrimination of hepatic reticuloendothelial clearance and phagocytic killing. J Leukoc Biol 1994; 55: 24852.
  • 58
    Gregory S H, Cousens L P, Van Rooijen N, Dopp E A, Carlos T M, Wing E J. Complementary adhesion molecules promote neutrophil–Kupffer cell interaction and the elimination of bacteria taken up by the liver. J Immunol 2002; 268: 30815.
  • 59
    Gregory S H, Wing E J. Neutrophil–Kupffer cell interaction: a critical component of host defenses to systemic bacterial infections. J Leukoc Biol 2002; 72: 23948.
  • 60
    Ofek I, Sharon N. Lectinophagocytosis: a molecular mechanism of recognition between cell surface sugars and lectins in the phagocytosis of bacteria. Infect Immun 1988; 56: 53947.
  • 61
    Perry A, Ofek I. Inhibition of blood clearance and hepatic tissue binding of Escherichia coli by liver lectin-specific sugars and glycoproteins. Infect Immun 1984; 25762.
  • 62
    Rosen H, Gordon S, North R J. Exacerbation of murine listeriosis by a monoclonal antibody specific for the type 3 complement receptor of myelomonocytic cells. Absence of monocytes at infective foci allows Listeria to multiply in nonphagocytic cells. J Exp Med 1989; 170: 2737.
  • 63
    Van Oosten M, Van De Bilt E, De Vries H E, Van Berkel T J, Kuiper J. Vascular adhesion molecule-1 and intercellular adhesion molecule-1 expression on rat liver cells after lipopolysaccharide administration in vivo. Hepatology 1995; 22: 153846.
  • 64
    Tsukamoto H, Lu C S. Current concepts in the pathogenesis of alcoholic liver injury. FASEB J 2001; 15: 133548.
  • 65
    Rakhmilevich A L. Neutrophils are essential for resolution of primary and secondary infection with Listeria monocytogenes. J Leukoc Biol 1995; 57: 82731.
  • 66
    Brown K E, Brunt E M, Heinecke J W. Immunohistochemical detection of myeloperoxidase and its oxidation products in Kupffer cells of human liver. Am J Pathol 2001; 159: 20818.
  • 67
    Shi J, Fujieda H, Kokubo Y, Wake K. Apoptosis of neutrophils and their elimination by Kupffer cells in rat liver. Hepatology 1996; 24: 125663.
  • 68
    Shi J, Gilbert G E, Kokubo Y, Ohashi T. Role of the liver in regulating numbers of circulating neutrophils. Blood 2001; 98: 122630.
  • 69
    Fadok V A, Bratton D L, Konowal A, Freed P W, Westcott J Y, Henson P M. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, E2 and PAF. J Clin Invest 1998; 101: 8908.
  • 70
    Crispe I N, Dao T, Klugewitz K, Mehal W Z, Metz D P. The liver as a site of T-cell apoptosis: graveyard or killing field? Immunol Rev 2000; 174: 4762.
  • 71
    Liu Z X, Govindarajan S, Okamoto S, Dennert G. Fas-mediated apoptosis causes elimination of virus-specific cytotoxic T cells in the virus-infected liver. J Immunol 2001; 166: 303541.
  • 72
    Sun Z, Wada T, Maemura K, et al. Hepatic allograft-derived Kupffer cells regulate T cell response in rats. Liver Transplant 2003; 9: 48997.
  • 73
    Bellone M, Iezzi G, Rovere P, et al. Processing of engulfed apoptotic bodies yields T cell epitopes. J Immunol 1997; 159: 53919.
  • 74
    Albert M L, Sauter B, Bhardwaj N. Dendritic cell aquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392: 869.
  • 75
    Loffreda S, Rai R M, Yang S Q, Lin H Z, Diehl A M. Bile ducts and portal and central veins are major producers of tumor necrosis factor alpha in regenerating rat liver. Gastroenterology 1997; 112: 208998.
  • 76
    Yamada Y, Kirillova I, Peschon J, Fausto N. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type-I TNF receptor. Proc Natl Acad Sci USA 1997; 94: 14416.
  • 77
    Cressman D, Greenbaum L, DeAngelis R, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 1996; 274: 137983.
  • 78
    Selzner N, Selzner M, Odermatt B, Tian Y, Van Rooijen N, Clavien P A. ICAM-1 triggers liver regeneration through leukocyte recruitment and Kupffer cell-dependent release of TNF-alpha/IL-6 in mice. Gastroenterology 2003; 124: 692700.
  • 79
    Strey C W, Markiewski M, Mastellos D, et al. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med 2003; 198: 91323.
  • 80
    Solga S F, Diehl A M. Non-alcoholic fatty liver diseases: lumen–liver interactions and possible role for probiotics. J Hepatol 2003; 38: 6817.
  • 81
    Jaeschke H, Gores G J, Cederbaum A I, Hinson J A, Pessayre D, Lemasters J J. Mechanisms of hepatotoxicity. Tox Sci 2002; 65: 16676.
  • 82
    Videla A L, Fernandez V, Tapia G, Varala P. Oxidative stress-mediated hepatotoxicity of iron and copper: role of Kupffer cells. Biometals 2003; 16: 10311.
  • 83
    Bilzer M, Gerbes A L. Preservation injury of the liver: mechanisms and novel therapeutic strategies. J Hepatol 2000; 32: 50815.
  • 84
    Selzner N, Rudiger H, Graf R, Clavien P A. Protective strategies against ischemic injury of the liver. Gastroenterology 2003; 125: 91736.
  • 85
    Rivera C A, Bradford B U, Hunt K J, et al. Attenuation of CCl(4)-induced hepatic fibrosis by GdCl(3) treatment of dietary glycine. Am J Physiol Gastrointest Liver Physiol 2001; 281: G2007.
  • 86
    Czaja M J, Xu J, Ju Y, Alt E, Schmiedeberg P. Lipopolysaccharide-neutralizing antibody reduces hepatocyte injury from acute hepatotoxin administration. Hepatology 1994; 19: 12829.
  • 87
    Graupera M, Garcia-Pagan J C, Titos E, et al. 5-lipoxygenase inhibition reduces intrahepatic vascular resistance of cirrhotic rat livers: a possibile role of cysteinyl-leukotrienes. Gastroenterology 2002; 122: 38793.
  • 88
    Yokoyama Y, Xu H, Kresge N, et al. Role of thromboxane A2 in early BDL-induced portal hypertension. Am J Physiol Gastrointest Liver Physiol 2003; 284: G45360.
  • 89
    Goulis J, Patch D, Burroughs A K. Bacterial infection in the pathogenesis of variceal bleeding. Lancet 1999; 353: 13942.
  • 90
    Hinson J A, Pike S L, Pumford N R, Mayeux P R. Nitrotyrosine-protein adducts in hepatic centrilobular areas following toxic doses of acetaminophen in mice. Chem Res Toxicol 1998; 11: 6047.
  • 91
    James L P, McCullough S S, Knight T R, Jaeschke H, Hinson J A. Acetaminophen toxicity in mice lacking NADPH oxidase activity: role of peroxynitrite formation and mitochondrial oxidant stress. Free Radical Res 2003; 37: 128997.
  • 92
    Goldin R D, Ratnayka I D, Breach C S, Brown I N, Wickramasinghe S N. Role of macrophages in acetaminophen (paracetamol)-induced hepatotoxicity. J Pathol 1996; 179: 4325.
  • 93
    Jaeschke H. Role of reactive oxygen species in hepatic ischemia–reperfusion injury and preconditioning. J Invest Surg 2003; 16: 12740.
  • 94
    Rymsa B, Wang J F, De Groot H. O2!!!!-release by activated Kupffer cells upon hypoxia-reoxygenation. Am J Physiol Gastrointest Liver Physiol 1991; 261: G6027.
  • 95
    Yokoyama I, Todo S, Miyata T, Selby R, Tzakis A G, Starzl T E. Endotoxemia and human liver transplantation. Transplant Proc 1989; 21: 383341.
  • 96
    Jaeschke H, Farhood A, Bautista A P, Spolarics Z, Spitzer J J. Complement activates Kupffer cells and neutrophils during reperfusion after hepatic ischemia. Am J Physiol Gastrointest Liver Physiol 1993; 264: G8019.
  • 97
    Jaeschke H. Molecular mechanisms of hepatic ischemia–reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol 2003; 284: G1526.
  • 98
    Liu P, Fisher M A, Farhood A, Smith C W, Jaeschke H. Beneficial effects of extracellular glutathione against endotoxin-induced liver injury during ischemia and reperfusion. Shock 1995; 43: 6470.
  • 99
    Bilzer M, Paumgartner G, Gerbes A L. Glutathione protects the rat liver against reperfusion injury after hypothermic preservation. Gastroenterology 1999; 117: 20010.
  • 100
    Bilzer M, Baron A, Schauer R, Steib C, Ebensberger S, Gerbes A L. Glutathione treatment protects the rat liver against injury after warm ischemia and Kupffer cell activation. Digestion 2002; 66: 4957.
  • 101
    Schauer R J, Gerbes A L, Vonier D, et al. Glutathione protects the rat liver against reperfusion injury after prolonged warm ischemia. Ann Surg 2004; 239: 22031.
  • 102
    Bilzer M, Witthaut R, Paumgartner G, Gerbes A L. Prevention of ischemia/reperfusion injury in the rat liver by atrial natriuretic peptide. Gastroenterology 1994; 106: 14351.
  • 103
    Gerbes A L, Vollmar A M, Kiemer A K, Bilzer M. The guanylate cyclase-coupled natriuretic peptide receptor: a new target for prevention of cold ischemia–reperfusion damage of the rat liver. Hepatology 1998; 28: 130917.
  • 104
    Von Ruecker A A, Wild M, Rao G S, Bidlingmaier F. Atrial natriuretic peptide protects hepatocytes against damage induced by hypoxia and reactive oxygen: possible role of intracellular free ionized calcium. J Clin Chem Clin Biochem 1989; 27: 5317.
  • 105
    Kiemer A K, Baron A, Gerbes A L, Bilzer M, Vollmar A M. The atrial natriuretic peptide as a regulator of Kupffer cell functions. Shock 2002; 17: 36571.
  • 106
    Kiemer A K, Gerwig T, Gerbes A L, Meissner H, Bilzer M, Vollmar A M. Kupffer-cell specific induction of heme oxygenase 1 (hsp32) by the atrial natriuretic peptide-role of cGMP. J Hepatol 2003; 38: 4908.
  • 107
    Adachi Y, Bradford B U, Gao W, Bojes H K, Thurman R G. Inactivation of Kupffer cells prevents early alcohol-induced liver injury. Hepatology 1994; 20: 45360.
  • 108
    Enomoto M, Ikejima K, Yamashima S, et al. Kupffer cell sensitization by alcohol involves increased permeability to gut-derived endotoxin. Alcohol Clin Exp Res 2001; 25: 5154.
  • 109
    Adachi Y, Moore L E, Bradford B U, Gao W, Thurman R G. Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology 1995; 108: 21824.
  • 110
    Nanji A A, Khettry U, Sadrzadeh S M. Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver disease. Proc Soc Exp Biol Med 1994; 205: 2437.
  • 111
    Iimuro Y, Gallucci R M, Luster M I, Kono H, Thurman R G. Antibodies to tumor necrosis factor alfa attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat. Hepatology 1997; 26: 15307.
  • 112
    Yin M, Wheeler M D, Kono H, et al. Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology 1999; 117: 94252.
  • 113
    McClain C, Hill D, Schmidt J, Diehl A M. Cytokines and alcoholic liver disease. Semin Liver 1993; 13: 17082.
  • 114
    Kamimura S, Tsukamoto H. Cytokine gene expression by Kupffer cells in experimental alcoholic liver disease. Hepatology 1995; 22: 13049.
  • 115
    Hill D B, Devalaraja R, Joshi-Barve S, Barve S, McClain C J. Antioxidants attenuate nuclear factor-kappa B activation and tumor necrosis factor-alpha production in a alcoholic hepatitis patient monocytes and rat Kupffer cells, in vitro. Clin Biochem 1999; 32: 56370.
  • 116
    Tsukamoto H, Lin M, Ohata M, Giulivi C, French S W, Brittenham G. Iron primes hepatic macrophages for NF-κB activation in alcoholic liver injury. Am J Physiol 1999; 277: G124050.
  • 117
    Bugianesi E, McCullough A J, Marchesini G. Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology 2005; 42: 9871000.
  • 118
    Cortez-Pinto H, Carneiro de Moura M, Day C P. Non-alcoholic steatohepatitis: from cell biology to clinical practice. J Hepatol 2006; 44: 197208.
  • 119
    Cai D, Yuan M, Frantz D F, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat Med 2005; 11: 18390.
  • 120
    Arkan M C, Hevener A L, Greten F R, et al. IKK-β links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11: 1918.
  • 121
    Yang S Q, Lin H Z, Lane M D, Clemens M, Diehl A M. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci USA 1997; 94: 255762.
  • 122
    Tomita K, Tamiya G, Ando S, et al. Tumor necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut 2006; 55: 41524.
  • 123
    Wigg A J, Roberts-Thomson I C, Dymock R B, McCarthy P J, Grose R H, Cummins A G. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor α in the pathogenesis of non-alcoholic steatohepatitis. Gut 2001; 48: 20611.
  • 124
    Mook O R, Van Marle J, Vreeling-Sindelarova H, Jonges R, Frederiks W M, Van Norden C J. Visualization of early events in tumor formation of eGFP-transfected rat colon cancer cells in liver. Hepatology 2003; 38: 295304.
  • 125
    Bayon L G, Izquierdo M A, Sirovich I, Van Rooijen N, Beelen R H, Meijer S. Role of Kupffer cells in arresting circulating tumor cells and controlling metastatic growth in the liver. Hepatology 1996; 23: 122431.
  • 126
    Schurman B, Heuff G, Beelen R H, Meyer S. Enhanced human Kupffer cell-mediated cytotoxicity after activation of the effector cells and modulation of the target cells by interferon-gamma: a mechanistic study at the cellular level. Cell Immunol 1995; 165: 1417.
  • 127
    Heuff G, Oldenburg H S, Boutkan H, et al. Enhanced tumour growth in the rat liver after selective elimination of Kupffer cells. Cancer Immunol Immunother 1993; 37: 125130.
  • 128
    Karpoff H M, Jarnagin W, Delman K, Fong Y. Regional muramyl tripeptide phosphatidylethanolamine administration enhances hepatic immune function and tumor surveillance. Surgery 2000; 128: 2138.
  • 129
    Van Der Bij G J, Oosterling S J, Meijer S, Beelen R H J, Van Egmond M. Therapeutic potential of Kupffer cells in prevention of liver metastases outgrowth. Immunobiology 2005; 210: 25965.
  • 130
    Nakamura T. Structure and function of hepatocyte growth factor. Prog Growth Factor Res 1991; 3: 6785.
  • 131
    Knittel T, Mehde M, Kobold D, Saile B, Dinter C, Ramadori G. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: regulation by TNF-alpha and TGF-beta 1. J Hepatol 1999; 30: 4860.